Cargando…

The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion

Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including vi...

Descripción completa

Detalles Bibliográficos
Autores principales: Winter, Sophie L, Golani, Gonen, Lolicato, Fabio, Vallbracht, Melina, Thiyagarajah, Keerthihan, Ahmed, Samy Sid, Lüchtenborg, Christian, Fackler, Oliver T, Brügger, Britta, Hoenen, Thomas, Nickel, Walter, Schwarz, Ulrich S, Chlanda, Petr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233383/
https://www.ncbi.nlm.nih.gov/pubmed/37082863
http://dx.doi.org/10.15252/embj.2023113578
Descripción
Sumario:Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including virion disassembly and nucleocapsid release into the cytosol, remains unknown. Here, we investigate the structural architecture of EBOVs entering host cells and discover that the VP40 matrix disassembles prior to membrane fusion. We reveal that VP40 disassembly is caused by the weakening of VP40–lipid interactions driven by low endosomal pH that equilibrates passively across the viral envelope without a dedicated ion channel. We further show that viral membrane fusion depends on VP40 matrix integrity, and its disassembly reduces the energy barrier for fusion stalk formation. Thus, pH‐driven structural remodeling of the VP40 matrix acts as a molecular switch coupling viral matrix uncoating to membrane fusion during EBOV entry.