Cargando…
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
BACKGROUND: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple mo...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238088/ https://www.ncbi.nlm.nih.gov/pubmed/37083521 http://dx.doi.org/10.7554/eLife.81916 |
_version_ | 1785053216960937984 |
---|---|
author | Sherratt, Katharine Gruson, Hugo Grah, Rok Johnson, Helen Niehus, Rene Prasse, Bastian Sandmann, Frank Deuschel, Jannik Wolffram, Daniel Abbott, Sam Ullrich, Alexander Gibson, Graham Ray, Evan L Reich, Nicholas G Sheldon, Daniel Wang, Yijin Wattanachit, Nutcha Wang, Lijing Trnka, Jan Obozinski, Guillaume Sun, Tao Thanou, Dorina Pottier, Loic Krymova, Ekaterina Meinke, Jan H Barbarossa, Maria Vittoria Leithauser, Neele Mohring, Jan Schneider, Johanna Wlazlo, Jaroslaw Fuhrmann, Jan Lange, Berit Rodiah, Isti Baccam, Prasith Gurung, Heidi Stage, Steven Suchoski, Bradley Budzinski, Jozef Walraven, Robert Villanueva, Inmaculada Tucek, Vit Smid, Martin Zajicek, Milan Perez Alvarez, Cesar Reina, Borja Bosse, Nikos I Meakin, Sophie R Castro, Lauren Fairchild, Geoffrey Michaud, Isaac Osthus, Dave Alaimo Di Loro, Pierfrancesco Maruotti, Antonello Eclerova, Veronika Kraus, Andrea Kraus, David Pribylova, Lenka Dimitris, Bertsimas Li, Michael Lingzhi Saksham, Soni Dehning, Jonas Mohr, Sebastian Priesemann, Viola Redlarski, Grzegorz Bejar, Benjamin Ardenghi, Giovanni Parolini, Nicola Ziarelli, Giovanni Bock, Wolfgang Heyder, Stefan Hotz, Thomas Singh, David E Guzman-Merino, Miguel Aznarte, Jose L Morina, David Alonso, Sergio Alvarez, Enric Lopez, Daniel Prats, Clara Burgard, Jan Pablo Rodloff, Arne Zimmermann, Tom Kuhlmann, Alexander Zibert, Janez Pennoni, Fulvia Divino, Fabio Catala, Marti Lovison, Gianfranco Giudici, Paolo Tarantino, Barbara Bartolucci, Francesco Jona Lasinio, Giovanna Mingione, Marco Farcomeni, Alessio Srivastava, Ajitesh Montero-Manso, Pablo Adiga, Aniruddha Hurt, Benjamin Lewis, Bryan Marathe, Madhav Porebski, Przemyslaw Venkatramanan, Srinivasan Bartczuk, Rafal P Dreger, Filip Gambin, Anna Gogolewski, Krzysztof Gruziel-Slomka, Magdalena Krupa, Bartosz Moszyński, Antoni Niedzielewski, Karol Nowosielski, Jedrzej Radwan, Maciej Rakowski, Franciszek Semeniuk, Marcin Szczurek, Ewa Zielinski, Jakub Kisielewski, Jan Pabjan, Barbara Holger, Kirsten Kheifetz, Yuri Scholz, Markus Przemyslaw, Biecek Bodych, Marcin Filinski, Maciej Idzikowski, Radoslaw Krueger, Tyll Ozanski, Tomasz Bracher, Johannes Funk, Sebastian |
author_facet | Sherratt, Katharine Gruson, Hugo Grah, Rok Johnson, Helen Niehus, Rene Prasse, Bastian Sandmann, Frank Deuschel, Jannik Wolffram, Daniel Abbott, Sam Ullrich, Alexander Gibson, Graham Ray, Evan L Reich, Nicholas G Sheldon, Daniel Wang, Yijin Wattanachit, Nutcha Wang, Lijing Trnka, Jan Obozinski, Guillaume Sun, Tao Thanou, Dorina Pottier, Loic Krymova, Ekaterina Meinke, Jan H Barbarossa, Maria Vittoria Leithauser, Neele Mohring, Jan Schneider, Johanna Wlazlo, Jaroslaw Fuhrmann, Jan Lange, Berit Rodiah, Isti Baccam, Prasith Gurung, Heidi Stage, Steven Suchoski, Bradley Budzinski, Jozef Walraven, Robert Villanueva, Inmaculada Tucek, Vit Smid, Martin Zajicek, Milan Perez Alvarez, Cesar Reina, Borja Bosse, Nikos I Meakin, Sophie R Castro, Lauren Fairchild, Geoffrey Michaud, Isaac Osthus, Dave Alaimo Di Loro, Pierfrancesco Maruotti, Antonello Eclerova, Veronika Kraus, Andrea Kraus, David Pribylova, Lenka Dimitris, Bertsimas Li, Michael Lingzhi Saksham, Soni Dehning, Jonas Mohr, Sebastian Priesemann, Viola Redlarski, Grzegorz Bejar, Benjamin Ardenghi, Giovanni Parolini, Nicola Ziarelli, Giovanni Bock, Wolfgang Heyder, Stefan Hotz, Thomas Singh, David E Guzman-Merino, Miguel Aznarte, Jose L Morina, David Alonso, Sergio Alvarez, Enric Lopez, Daniel Prats, Clara Burgard, Jan Pablo Rodloff, Arne Zimmermann, Tom Kuhlmann, Alexander Zibert, Janez Pennoni, Fulvia Divino, Fabio Catala, Marti Lovison, Gianfranco Giudici, Paolo Tarantino, Barbara Bartolucci, Francesco Jona Lasinio, Giovanna Mingione, Marco Farcomeni, Alessio Srivastava, Ajitesh Montero-Manso, Pablo Adiga, Aniruddha Hurt, Benjamin Lewis, Bryan Marathe, Madhav Porebski, Przemyslaw Venkatramanan, Srinivasan Bartczuk, Rafal P Dreger, Filip Gambin, Anna Gogolewski, Krzysztof Gruziel-Slomka, Magdalena Krupa, Bartosz Moszyński, Antoni Niedzielewski, Karol Nowosielski, Jedrzej Radwan, Maciej Rakowski, Franciszek Semeniuk, Marcin Szczurek, Ewa Zielinski, Jakub Kisielewski, Jan Pabjan, Barbara Holger, Kirsten Kheifetz, Yuri Scholz, Markus Przemyslaw, Biecek Bodych, Marcin Filinski, Maciej Idzikowski, Radoslaw Krueger, Tyll Ozanski, Tomasz Bracher, Johannes Funk, Sebastian |
author_sort | Sherratt, Katharine |
collection | PubMed |
description | BACKGROUND: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. METHODS: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance. RESULTS: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. CONCLUSIONS: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. FUNDING: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z). |
format | Online Article Text |
id | pubmed-10238088 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-102380882023-06-03 Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations Sherratt, Katharine Gruson, Hugo Grah, Rok Johnson, Helen Niehus, Rene Prasse, Bastian Sandmann, Frank Deuschel, Jannik Wolffram, Daniel Abbott, Sam Ullrich, Alexander Gibson, Graham Ray, Evan L Reich, Nicholas G Sheldon, Daniel Wang, Yijin Wattanachit, Nutcha Wang, Lijing Trnka, Jan Obozinski, Guillaume Sun, Tao Thanou, Dorina Pottier, Loic Krymova, Ekaterina Meinke, Jan H Barbarossa, Maria Vittoria Leithauser, Neele Mohring, Jan Schneider, Johanna Wlazlo, Jaroslaw Fuhrmann, Jan Lange, Berit Rodiah, Isti Baccam, Prasith Gurung, Heidi Stage, Steven Suchoski, Bradley Budzinski, Jozef Walraven, Robert Villanueva, Inmaculada Tucek, Vit Smid, Martin Zajicek, Milan Perez Alvarez, Cesar Reina, Borja Bosse, Nikos I Meakin, Sophie R Castro, Lauren Fairchild, Geoffrey Michaud, Isaac Osthus, Dave Alaimo Di Loro, Pierfrancesco Maruotti, Antonello Eclerova, Veronika Kraus, Andrea Kraus, David Pribylova, Lenka Dimitris, Bertsimas Li, Michael Lingzhi Saksham, Soni Dehning, Jonas Mohr, Sebastian Priesemann, Viola Redlarski, Grzegorz Bejar, Benjamin Ardenghi, Giovanni Parolini, Nicola Ziarelli, Giovanni Bock, Wolfgang Heyder, Stefan Hotz, Thomas Singh, David E Guzman-Merino, Miguel Aznarte, Jose L Morina, David Alonso, Sergio Alvarez, Enric Lopez, Daniel Prats, Clara Burgard, Jan Pablo Rodloff, Arne Zimmermann, Tom Kuhlmann, Alexander Zibert, Janez Pennoni, Fulvia Divino, Fabio Catala, Marti Lovison, Gianfranco Giudici, Paolo Tarantino, Barbara Bartolucci, Francesco Jona Lasinio, Giovanna Mingione, Marco Farcomeni, Alessio Srivastava, Ajitesh Montero-Manso, Pablo Adiga, Aniruddha Hurt, Benjamin Lewis, Bryan Marathe, Madhav Porebski, Przemyslaw Venkatramanan, Srinivasan Bartczuk, Rafal P Dreger, Filip Gambin, Anna Gogolewski, Krzysztof Gruziel-Slomka, Magdalena Krupa, Bartosz Moszyński, Antoni Niedzielewski, Karol Nowosielski, Jedrzej Radwan, Maciej Rakowski, Franciszek Semeniuk, Marcin Szczurek, Ewa Zielinski, Jakub Kisielewski, Jan Pabjan, Barbara Holger, Kirsten Kheifetz, Yuri Scholz, Markus Przemyslaw, Biecek Bodych, Marcin Filinski, Maciej Idzikowski, Radoslaw Krueger, Tyll Ozanski, Tomasz Bracher, Johannes Funk, Sebastian eLife Epidemiology and Global Health BACKGROUND: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. METHODS: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance. RESULTS: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. CONCLUSIONS: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. FUNDING: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z). eLife Sciences Publications, Ltd 2023-04-21 /pmc/articles/PMC10238088/ /pubmed/37083521 http://dx.doi.org/10.7554/eLife.81916 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication (https://creativecommons.org/publicdomain/zero/1.0/) . |
spellingShingle | Epidemiology and Global Health Sherratt, Katharine Gruson, Hugo Grah, Rok Johnson, Helen Niehus, Rene Prasse, Bastian Sandmann, Frank Deuschel, Jannik Wolffram, Daniel Abbott, Sam Ullrich, Alexander Gibson, Graham Ray, Evan L Reich, Nicholas G Sheldon, Daniel Wang, Yijin Wattanachit, Nutcha Wang, Lijing Trnka, Jan Obozinski, Guillaume Sun, Tao Thanou, Dorina Pottier, Loic Krymova, Ekaterina Meinke, Jan H Barbarossa, Maria Vittoria Leithauser, Neele Mohring, Jan Schneider, Johanna Wlazlo, Jaroslaw Fuhrmann, Jan Lange, Berit Rodiah, Isti Baccam, Prasith Gurung, Heidi Stage, Steven Suchoski, Bradley Budzinski, Jozef Walraven, Robert Villanueva, Inmaculada Tucek, Vit Smid, Martin Zajicek, Milan Perez Alvarez, Cesar Reina, Borja Bosse, Nikos I Meakin, Sophie R Castro, Lauren Fairchild, Geoffrey Michaud, Isaac Osthus, Dave Alaimo Di Loro, Pierfrancesco Maruotti, Antonello Eclerova, Veronika Kraus, Andrea Kraus, David Pribylova, Lenka Dimitris, Bertsimas Li, Michael Lingzhi Saksham, Soni Dehning, Jonas Mohr, Sebastian Priesemann, Viola Redlarski, Grzegorz Bejar, Benjamin Ardenghi, Giovanni Parolini, Nicola Ziarelli, Giovanni Bock, Wolfgang Heyder, Stefan Hotz, Thomas Singh, David E Guzman-Merino, Miguel Aznarte, Jose L Morina, David Alonso, Sergio Alvarez, Enric Lopez, Daniel Prats, Clara Burgard, Jan Pablo Rodloff, Arne Zimmermann, Tom Kuhlmann, Alexander Zibert, Janez Pennoni, Fulvia Divino, Fabio Catala, Marti Lovison, Gianfranco Giudici, Paolo Tarantino, Barbara Bartolucci, Francesco Jona Lasinio, Giovanna Mingione, Marco Farcomeni, Alessio Srivastava, Ajitesh Montero-Manso, Pablo Adiga, Aniruddha Hurt, Benjamin Lewis, Bryan Marathe, Madhav Porebski, Przemyslaw Venkatramanan, Srinivasan Bartczuk, Rafal P Dreger, Filip Gambin, Anna Gogolewski, Krzysztof Gruziel-Slomka, Magdalena Krupa, Bartosz Moszyński, Antoni Niedzielewski, Karol Nowosielski, Jedrzej Radwan, Maciej Rakowski, Franciszek Semeniuk, Marcin Szczurek, Ewa Zielinski, Jakub Kisielewski, Jan Pabjan, Barbara Holger, Kirsten Kheifetz, Yuri Scholz, Markus Przemyslaw, Biecek Bodych, Marcin Filinski, Maciej Idzikowski, Radoslaw Krueger, Tyll Ozanski, Tomasz Bracher, Johannes Funk, Sebastian Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations |
title | Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations |
title_full | Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations |
title_fullStr | Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations |
title_full_unstemmed | Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations |
title_short | Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations |
title_sort | predictive performance of multi-model ensemble forecasts of covid-19 across european nations |
topic | Epidemiology and Global Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238088/ https://www.ncbi.nlm.nih.gov/pubmed/37083521 http://dx.doi.org/10.7554/eLife.81916 |
work_keys_str_mv | AT sherrattkatharine predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT grusonhugo predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT grahrok predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT johnsonhelen predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT niehusrene predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT prassebastian predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT sandmannfrank predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT deuscheljannik predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT wolfframdaniel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT abbottsam predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT ullrichalexander predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT gibsongraham predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT rayevanl predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT reichnicholasg predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT sheldondaniel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT wangyijin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT wattanachitnutcha predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT wanglijing predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT trnkajan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT obozinskiguillaume predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT suntao predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT thanoudorina predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT pottierloic predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT krymovaekaterina predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT meinkejanh predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT barbarossamariavittoria predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT leithauserneele predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT mohringjan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT schneiderjohanna predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT wlazlojaroslaw predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT fuhrmannjan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT langeberit predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT rodiahisti predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT baccamprasith predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT gurungheidi predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT stagesteven predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT suchoskibradley predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT budzinskijozef predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT walravenrobert predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT villanuevainmaculada predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT tucekvit predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT smidmartin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT zajicekmilan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT perezalvarezcesar predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT reinaborja predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT bossenikosi predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT meakinsophier predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT castrolauren predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT fairchildgeoffrey predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT michaudisaac predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT osthusdave predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT alaimodiloropierfrancesco predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT maruottiantonello predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT eclerovaveronika predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT krausandrea predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT krausdavid predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT pribylovalenka predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT dimitrisbertsimas predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT limichaellingzhi predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT sakshamsoni predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT dehningjonas predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT mohrsebastian predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT priesemannviola predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT redlarskigrzegorz predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT bejarbenjamin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT ardenghigiovanni predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT parolininicola predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT ziarelligiovanni predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT bockwolfgang predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT heyderstefan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT hotzthomas predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT singhdavide predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT guzmanmerinomiguel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT aznartejosel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT morinadavid predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT alonsosergio predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT alvarezenric predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT lopezdaniel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT pratsclara predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT burgardjanpablo predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT rodloffarne predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT zimmermanntom predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT kuhlmannalexander predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT zibertjanez predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT pennonifulvia predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT divinofabio predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT catalamarti predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT lovisongianfranco predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT giudicipaolo predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT tarantinobarbara predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT bartoluccifrancesco predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT jonalasiniogiovanna predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT mingionemarco predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT farcomenialessio predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT srivastavaajitesh predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT monteromansopablo predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT adigaaniruddha predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT hurtbenjamin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT lewisbryan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT marathemadhav predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT porebskiprzemyslaw predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT venkatramanansrinivasan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT bartczukrafalp predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT dregerfilip predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT gambinanna predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT gogolewskikrzysztof predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT gruzielslomkamagdalena predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT krupabartosz predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT moszynskiantoni predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT niedzielewskikarol predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT nowosielskijedrzej predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT radwanmaciej predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT rakowskifranciszek predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT semeniukmarcin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT szczurekewa predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT zielinskijakub predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT kisielewskijan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT pabjanbarbara predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT holgerkirsten predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT kheifetzyuri predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT scholzmarkus predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT przemyslawbiecek predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT bodychmarcin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT filinskimaciej predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT idzikowskiradoslaw predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT kruegertyll predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT ozanskitomasz predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT bracherjohannes predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations AT funksebastian predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations |