Cargando…

Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations

BACKGROUND: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Sherratt, Katharine, Gruson, Hugo, Grah, Rok, Johnson, Helen, Niehus, Rene, Prasse, Bastian, Sandmann, Frank, Deuschel, Jannik, Wolffram, Daniel, Abbott, Sam, Ullrich, Alexander, Gibson, Graham, Ray, Evan L, Reich, Nicholas G, Sheldon, Daniel, Wang, Yijin, Wattanachit, Nutcha, Wang, Lijing, Trnka, Jan, Obozinski, Guillaume, Sun, Tao, Thanou, Dorina, Pottier, Loic, Krymova, Ekaterina, Meinke, Jan H, Barbarossa, Maria Vittoria, Leithauser, Neele, Mohring, Jan, Schneider, Johanna, Wlazlo, Jaroslaw, Fuhrmann, Jan, Lange, Berit, Rodiah, Isti, Baccam, Prasith, Gurung, Heidi, Stage, Steven, Suchoski, Bradley, Budzinski, Jozef, Walraven, Robert, Villanueva, Inmaculada, Tucek, Vit, Smid, Martin, Zajicek, Milan, Perez Alvarez, Cesar, Reina, Borja, Bosse, Nikos I, Meakin, Sophie R, Castro, Lauren, Fairchild, Geoffrey, Michaud, Isaac, Osthus, Dave, Alaimo Di Loro, Pierfrancesco, Maruotti, Antonello, Eclerova, Veronika, Kraus, Andrea, Kraus, David, Pribylova, Lenka, Dimitris, Bertsimas, Li, Michael Lingzhi, Saksham, Soni, Dehning, Jonas, Mohr, Sebastian, Priesemann, Viola, Redlarski, Grzegorz, Bejar, Benjamin, Ardenghi, Giovanni, Parolini, Nicola, Ziarelli, Giovanni, Bock, Wolfgang, Heyder, Stefan, Hotz, Thomas, Singh, David E, Guzman-Merino, Miguel, Aznarte, Jose L, Morina, David, Alonso, Sergio, Alvarez, Enric, Lopez, Daniel, Prats, Clara, Burgard, Jan Pablo, Rodloff, Arne, Zimmermann, Tom, Kuhlmann, Alexander, Zibert, Janez, Pennoni, Fulvia, Divino, Fabio, Catala, Marti, Lovison, Gianfranco, Giudici, Paolo, Tarantino, Barbara, Bartolucci, Francesco, Jona Lasinio, Giovanna, Mingione, Marco, Farcomeni, Alessio, Srivastava, Ajitesh, Montero-Manso, Pablo, Adiga, Aniruddha, Hurt, Benjamin, Lewis, Bryan, Marathe, Madhav, Porebski, Przemyslaw, Venkatramanan, Srinivasan, Bartczuk, Rafal P, Dreger, Filip, Gambin, Anna, Gogolewski, Krzysztof, Gruziel-Slomka, Magdalena, Krupa, Bartosz, Moszyński, Antoni, Niedzielewski, Karol, Nowosielski, Jedrzej, Radwan, Maciej, Rakowski, Franciszek, Semeniuk, Marcin, Szczurek, Ewa, Zielinski, Jakub, Kisielewski, Jan, Pabjan, Barbara, Holger, Kirsten, Kheifetz, Yuri, Scholz, Markus, Przemyslaw, Biecek, Bodych, Marcin, Filinski, Maciej, Idzikowski, Radoslaw, Krueger, Tyll, Ozanski, Tomasz, Bracher, Johannes, Funk, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238088/
https://www.ncbi.nlm.nih.gov/pubmed/37083521
http://dx.doi.org/10.7554/eLife.81916
_version_ 1785053216960937984
author Sherratt, Katharine
Gruson, Hugo
Grah, Rok
Johnson, Helen
Niehus, Rene
Prasse, Bastian
Sandmann, Frank
Deuschel, Jannik
Wolffram, Daniel
Abbott, Sam
Ullrich, Alexander
Gibson, Graham
Ray, Evan L
Reich, Nicholas G
Sheldon, Daniel
Wang, Yijin
Wattanachit, Nutcha
Wang, Lijing
Trnka, Jan
Obozinski, Guillaume
Sun, Tao
Thanou, Dorina
Pottier, Loic
Krymova, Ekaterina
Meinke, Jan H
Barbarossa, Maria Vittoria
Leithauser, Neele
Mohring, Jan
Schneider, Johanna
Wlazlo, Jaroslaw
Fuhrmann, Jan
Lange, Berit
Rodiah, Isti
Baccam, Prasith
Gurung, Heidi
Stage, Steven
Suchoski, Bradley
Budzinski, Jozef
Walraven, Robert
Villanueva, Inmaculada
Tucek, Vit
Smid, Martin
Zajicek, Milan
Perez Alvarez, Cesar
Reina, Borja
Bosse, Nikos I
Meakin, Sophie R
Castro, Lauren
Fairchild, Geoffrey
Michaud, Isaac
Osthus, Dave
Alaimo Di Loro, Pierfrancesco
Maruotti, Antonello
Eclerova, Veronika
Kraus, Andrea
Kraus, David
Pribylova, Lenka
Dimitris, Bertsimas
Li, Michael Lingzhi
Saksham, Soni
Dehning, Jonas
Mohr, Sebastian
Priesemann, Viola
Redlarski, Grzegorz
Bejar, Benjamin
Ardenghi, Giovanni
Parolini, Nicola
Ziarelli, Giovanni
Bock, Wolfgang
Heyder, Stefan
Hotz, Thomas
Singh, David E
Guzman-Merino, Miguel
Aznarte, Jose L
Morina, David
Alonso, Sergio
Alvarez, Enric
Lopez, Daniel
Prats, Clara
Burgard, Jan Pablo
Rodloff, Arne
Zimmermann, Tom
Kuhlmann, Alexander
Zibert, Janez
Pennoni, Fulvia
Divino, Fabio
Catala, Marti
Lovison, Gianfranco
Giudici, Paolo
Tarantino, Barbara
Bartolucci, Francesco
Jona Lasinio, Giovanna
Mingione, Marco
Farcomeni, Alessio
Srivastava, Ajitesh
Montero-Manso, Pablo
Adiga, Aniruddha
Hurt, Benjamin
Lewis, Bryan
Marathe, Madhav
Porebski, Przemyslaw
Venkatramanan, Srinivasan
Bartczuk, Rafal P
Dreger, Filip
Gambin, Anna
Gogolewski, Krzysztof
Gruziel-Slomka, Magdalena
Krupa, Bartosz
Moszyński, Antoni
Niedzielewski, Karol
Nowosielski, Jedrzej
Radwan, Maciej
Rakowski, Franciszek
Semeniuk, Marcin
Szczurek, Ewa
Zielinski, Jakub
Kisielewski, Jan
Pabjan, Barbara
Holger, Kirsten
Kheifetz, Yuri
Scholz, Markus
Przemyslaw, Biecek
Bodych, Marcin
Filinski, Maciej
Idzikowski, Radoslaw
Krueger, Tyll
Ozanski, Tomasz
Bracher, Johannes
Funk, Sebastian
author_facet Sherratt, Katharine
Gruson, Hugo
Grah, Rok
Johnson, Helen
Niehus, Rene
Prasse, Bastian
Sandmann, Frank
Deuschel, Jannik
Wolffram, Daniel
Abbott, Sam
Ullrich, Alexander
Gibson, Graham
Ray, Evan L
Reich, Nicholas G
Sheldon, Daniel
Wang, Yijin
Wattanachit, Nutcha
Wang, Lijing
Trnka, Jan
Obozinski, Guillaume
Sun, Tao
Thanou, Dorina
Pottier, Loic
Krymova, Ekaterina
Meinke, Jan H
Barbarossa, Maria Vittoria
Leithauser, Neele
Mohring, Jan
Schneider, Johanna
Wlazlo, Jaroslaw
Fuhrmann, Jan
Lange, Berit
Rodiah, Isti
Baccam, Prasith
Gurung, Heidi
Stage, Steven
Suchoski, Bradley
Budzinski, Jozef
Walraven, Robert
Villanueva, Inmaculada
Tucek, Vit
Smid, Martin
Zajicek, Milan
Perez Alvarez, Cesar
Reina, Borja
Bosse, Nikos I
Meakin, Sophie R
Castro, Lauren
Fairchild, Geoffrey
Michaud, Isaac
Osthus, Dave
Alaimo Di Loro, Pierfrancesco
Maruotti, Antonello
Eclerova, Veronika
Kraus, Andrea
Kraus, David
Pribylova, Lenka
Dimitris, Bertsimas
Li, Michael Lingzhi
Saksham, Soni
Dehning, Jonas
Mohr, Sebastian
Priesemann, Viola
Redlarski, Grzegorz
Bejar, Benjamin
Ardenghi, Giovanni
Parolini, Nicola
Ziarelli, Giovanni
Bock, Wolfgang
Heyder, Stefan
Hotz, Thomas
Singh, David E
Guzman-Merino, Miguel
Aznarte, Jose L
Morina, David
Alonso, Sergio
Alvarez, Enric
Lopez, Daniel
Prats, Clara
Burgard, Jan Pablo
Rodloff, Arne
Zimmermann, Tom
Kuhlmann, Alexander
Zibert, Janez
Pennoni, Fulvia
Divino, Fabio
Catala, Marti
Lovison, Gianfranco
Giudici, Paolo
Tarantino, Barbara
Bartolucci, Francesco
Jona Lasinio, Giovanna
Mingione, Marco
Farcomeni, Alessio
Srivastava, Ajitesh
Montero-Manso, Pablo
Adiga, Aniruddha
Hurt, Benjamin
Lewis, Bryan
Marathe, Madhav
Porebski, Przemyslaw
Venkatramanan, Srinivasan
Bartczuk, Rafal P
Dreger, Filip
Gambin, Anna
Gogolewski, Krzysztof
Gruziel-Slomka, Magdalena
Krupa, Bartosz
Moszyński, Antoni
Niedzielewski, Karol
Nowosielski, Jedrzej
Radwan, Maciej
Rakowski, Franciszek
Semeniuk, Marcin
Szczurek, Ewa
Zielinski, Jakub
Kisielewski, Jan
Pabjan, Barbara
Holger, Kirsten
Kheifetz, Yuri
Scholz, Markus
Przemyslaw, Biecek
Bodych, Marcin
Filinski, Maciej
Idzikowski, Radoslaw
Krueger, Tyll
Ozanski, Tomasz
Bracher, Johannes
Funk, Sebastian
author_sort Sherratt, Katharine
collection PubMed
description BACKGROUND: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. METHODS: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance. RESULTS: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. CONCLUSIONS: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. FUNDING: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).
format Online
Article
Text
id pubmed-10238088
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-102380882023-06-03 Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations Sherratt, Katharine Gruson, Hugo Grah, Rok Johnson, Helen Niehus, Rene Prasse, Bastian Sandmann, Frank Deuschel, Jannik Wolffram, Daniel Abbott, Sam Ullrich, Alexander Gibson, Graham Ray, Evan L Reich, Nicholas G Sheldon, Daniel Wang, Yijin Wattanachit, Nutcha Wang, Lijing Trnka, Jan Obozinski, Guillaume Sun, Tao Thanou, Dorina Pottier, Loic Krymova, Ekaterina Meinke, Jan H Barbarossa, Maria Vittoria Leithauser, Neele Mohring, Jan Schneider, Johanna Wlazlo, Jaroslaw Fuhrmann, Jan Lange, Berit Rodiah, Isti Baccam, Prasith Gurung, Heidi Stage, Steven Suchoski, Bradley Budzinski, Jozef Walraven, Robert Villanueva, Inmaculada Tucek, Vit Smid, Martin Zajicek, Milan Perez Alvarez, Cesar Reina, Borja Bosse, Nikos I Meakin, Sophie R Castro, Lauren Fairchild, Geoffrey Michaud, Isaac Osthus, Dave Alaimo Di Loro, Pierfrancesco Maruotti, Antonello Eclerova, Veronika Kraus, Andrea Kraus, David Pribylova, Lenka Dimitris, Bertsimas Li, Michael Lingzhi Saksham, Soni Dehning, Jonas Mohr, Sebastian Priesemann, Viola Redlarski, Grzegorz Bejar, Benjamin Ardenghi, Giovanni Parolini, Nicola Ziarelli, Giovanni Bock, Wolfgang Heyder, Stefan Hotz, Thomas Singh, David E Guzman-Merino, Miguel Aznarte, Jose L Morina, David Alonso, Sergio Alvarez, Enric Lopez, Daniel Prats, Clara Burgard, Jan Pablo Rodloff, Arne Zimmermann, Tom Kuhlmann, Alexander Zibert, Janez Pennoni, Fulvia Divino, Fabio Catala, Marti Lovison, Gianfranco Giudici, Paolo Tarantino, Barbara Bartolucci, Francesco Jona Lasinio, Giovanna Mingione, Marco Farcomeni, Alessio Srivastava, Ajitesh Montero-Manso, Pablo Adiga, Aniruddha Hurt, Benjamin Lewis, Bryan Marathe, Madhav Porebski, Przemyslaw Venkatramanan, Srinivasan Bartczuk, Rafal P Dreger, Filip Gambin, Anna Gogolewski, Krzysztof Gruziel-Slomka, Magdalena Krupa, Bartosz Moszyński, Antoni Niedzielewski, Karol Nowosielski, Jedrzej Radwan, Maciej Rakowski, Franciszek Semeniuk, Marcin Szczurek, Ewa Zielinski, Jakub Kisielewski, Jan Pabjan, Barbara Holger, Kirsten Kheifetz, Yuri Scholz, Markus Przemyslaw, Biecek Bodych, Marcin Filinski, Maciej Idzikowski, Radoslaw Krueger, Tyll Ozanski, Tomasz Bracher, Johannes Funk, Sebastian eLife Epidemiology and Global Health BACKGROUND: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. METHODS: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance. RESULTS: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. CONCLUSIONS: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. FUNDING: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z). eLife Sciences Publications, Ltd 2023-04-21 /pmc/articles/PMC10238088/ /pubmed/37083521 http://dx.doi.org/10.7554/eLife.81916 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication (https://creativecommons.org/publicdomain/zero/1.0/) .
spellingShingle Epidemiology and Global Health
Sherratt, Katharine
Gruson, Hugo
Grah, Rok
Johnson, Helen
Niehus, Rene
Prasse, Bastian
Sandmann, Frank
Deuschel, Jannik
Wolffram, Daniel
Abbott, Sam
Ullrich, Alexander
Gibson, Graham
Ray, Evan L
Reich, Nicholas G
Sheldon, Daniel
Wang, Yijin
Wattanachit, Nutcha
Wang, Lijing
Trnka, Jan
Obozinski, Guillaume
Sun, Tao
Thanou, Dorina
Pottier, Loic
Krymova, Ekaterina
Meinke, Jan H
Barbarossa, Maria Vittoria
Leithauser, Neele
Mohring, Jan
Schneider, Johanna
Wlazlo, Jaroslaw
Fuhrmann, Jan
Lange, Berit
Rodiah, Isti
Baccam, Prasith
Gurung, Heidi
Stage, Steven
Suchoski, Bradley
Budzinski, Jozef
Walraven, Robert
Villanueva, Inmaculada
Tucek, Vit
Smid, Martin
Zajicek, Milan
Perez Alvarez, Cesar
Reina, Borja
Bosse, Nikos I
Meakin, Sophie R
Castro, Lauren
Fairchild, Geoffrey
Michaud, Isaac
Osthus, Dave
Alaimo Di Loro, Pierfrancesco
Maruotti, Antonello
Eclerova, Veronika
Kraus, Andrea
Kraus, David
Pribylova, Lenka
Dimitris, Bertsimas
Li, Michael Lingzhi
Saksham, Soni
Dehning, Jonas
Mohr, Sebastian
Priesemann, Viola
Redlarski, Grzegorz
Bejar, Benjamin
Ardenghi, Giovanni
Parolini, Nicola
Ziarelli, Giovanni
Bock, Wolfgang
Heyder, Stefan
Hotz, Thomas
Singh, David E
Guzman-Merino, Miguel
Aznarte, Jose L
Morina, David
Alonso, Sergio
Alvarez, Enric
Lopez, Daniel
Prats, Clara
Burgard, Jan Pablo
Rodloff, Arne
Zimmermann, Tom
Kuhlmann, Alexander
Zibert, Janez
Pennoni, Fulvia
Divino, Fabio
Catala, Marti
Lovison, Gianfranco
Giudici, Paolo
Tarantino, Barbara
Bartolucci, Francesco
Jona Lasinio, Giovanna
Mingione, Marco
Farcomeni, Alessio
Srivastava, Ajitesh
Montero-Manso, Pablo
Adiga, Aniruddha
Hurt, Benjamin
Lewis, Bryan
Marathe, Madhav
Porebski, Przemyslaw
Venkatramanan, Srinivasan
Bartczuk, Rafal P
Dreger, Filip
Gambin, Anna
Gogolewski, Krzysztof
Gruziel-Slomka, Magdalena
Krupa, Bartosz
Moszyński, Antoni
Niedzielewski, Karol
Nowosielski, Jedrzej
Radwan, Maciej
Rakowski, Franciszek
Semeniuk, Marcin
Szczurek, Ewa
Zielinski, Jakub
Kisielewski, Jan
Pabjan, Barbara
Holger, Kirsten
Kheifetz, Yuri
Scholz, Markus
Przemyslaw, Biecek
Bodych, Marcin
Filinski, Maciej
Idzikowski, Radoslaw
Krueger, Tyll
Ozanski, Tomasz
Bracher, Johannes
Funk, Sebastian
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
title Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
title_full Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
title_fullStr Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
title_full_unstemmed Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
title_short Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
title_sort predictive performance of multi-model ensemble forecasts of covid-19 across european nations
topic Epidemiology and Global Health
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238088/
https://www.ncbi.nlm.nih.gov/pubmed/37083521
http://dx.doi.org/10.7554/eLife.81916
work_keys_str_mv AT sherrattkatharine predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT grusonhugo predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT grahrok predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT johnsonhelen predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT niehusrene predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT prassebastian predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT sandmannfrank predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT deuscheljannik predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT wolfframdaniel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT abbottsam predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT ullrichalexander predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT gibsongraham predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT rayevanl predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT reichnicholasg predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT sheldondaniel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT wangyijin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT wattanachitnutcha predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT wanglijing predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT trnkajan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT obozinskiguillaume predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT suntao predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT thanoudorina predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT pottierloic predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT krymovaekaterina predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT meinkejanh predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT barbarossamariavittoria predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT leithauserneele predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT mohringjan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT schneiderjohanna predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT wlazlojaroslaw predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT fuhrmannjan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT langeberit predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT rodiahisti predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT baccamprasith predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT gurungheidi predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT stagesteven predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT suchoskibradley predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT budzinskijozef predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT walravenrobert predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT villanuevainmaculada predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT tucekvit predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT smidmartin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT zajicekmilan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT perezalvarezcesar predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT reinaborja predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT bossenikosi predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT meakinsophier predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT castrolauren predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT fairchildgeoffrey predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT michaudisaac predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT osthusdave predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT alaimodiloropierfrancesco predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT maruottiantonello predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT eclerovaveronika predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT krausandrea predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT krausdavid predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT pribylovalenka predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT dimitrisbertsimas predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT limichaellingzhi predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT sakshamsoni predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT dehningjonas predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT mohrsebastian predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT priesemannviola predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT redlarskigrzegorz predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT bejarbenjamin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT ardenghigiovanni predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT parolininicola predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT ziarelligiovanni predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT bockwolfgang predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT heyderstefan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT hotzthomas predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT singhdavide predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT guzmanmerinomiguel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT aznartejosel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT morinadavid predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT alonsosergio predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT alvarezenric predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT lopezdaniel predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT pratsclara predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT burgardjanpablo predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT rodloffarne predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT zimmermanntom predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT kuhlmannalexander predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT zibertjanez predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT pennonifulvia predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT divinofabio predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT catalamarti predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT lovisongianfranco predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT giudicipaolo predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT tarantinobarbara predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT bartoluccifrancesco predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT jonalasiniogiovanna predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT mingionemarco predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT farcomenialessio predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT srivastavaajitesh predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT monteromansopablo predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT adigaaniruddha predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT hurtbenjamin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT lewisbryan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT marathemadhav predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT porebskiprzemyslaw predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT venkatramanansrinivasan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT bartczukrafalp predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT dregerfilip predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT gambinanna predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT gogolewskikrzysztof predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT gruzielslomkamagdalena predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT krupabartosz predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT moszynskiantoni predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT niedzielewskikarol predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT nowosielskijedrzej predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT radwanmaciej predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT rakowskifranciszek predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT semeniukmarcin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT szczurekewa predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT zielinskijakub predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT kisielewskijan predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT pabjanbarbara predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT holgerkirsten predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT kheifetzyuri predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT scholzmarkus predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT przemyslawbiecek predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT bodychmarcin predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT filinskimaciej predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT idzikowskiradoslaw predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT kruegertyll predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT ozanskitomasz predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT bracherjohannes predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations
AT funksebastian predictiveperformanceofmultimodelensembleforecastsofcovid19acrosseuropeannations