Cargando…
Improvement of cryo-EM maps by simultaneous local and non-local deep learning
Cryo-EM has emerged as the most important technique for structure determination of macromolecular complexes. However, raw cryo-EM maps often exhibit loss of contrast at high resolution and heterogeneity over the entire map. As such, various post-processing methods have been proposed to improve cryo-...
Autores principales: | He, Jiahua, Li, Tao, Huang, Sheng-You |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239474/ https://www.ncbi.nlm.nih.gov/pubmed/37270635 http://dx.doi.org/10.1038/s41467-023-39031-1 |
Ejemplares similares
-
EMNUSS: a deep learning framework for secondary structure annotation in cryo-EM maps
por: He, Jiahua, et al.
Publicado: (2021) -
Model building of protein complexes from intermediate-resolution cryo-EM maps with deep learning-guided automatic assembly
por: He, Jiahua, et al.
Publicado: (2022) -
The Local Resolution of Cryo-EM Density Maps
por: Kucukelbir, Alp, et al.
Publicado: (2013) -
Local computational methods to improve the interpretability and analysis of cryo-EM maps
por: Kaur, Satinder, et al.
Publicado: (2021) -
Measuring local-directional resolution and local anisotropy in cryo-EM maps
por: Vilas, Jose Luis, et al.
Publicado: (2020)