Cargando…
Resting natural killer cell homeostasis relies on tryptophan/NAD (+) metabolism and HIF‐1α
Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen‐sensitive transcription factors, the hypoxia‐inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240188/ https://www.ncbi.nlm.nih.gov/pubmed/36987917 http://dx.doi.org/10.15252/embr.202256156 |
_version_ | 1785053697774977024 |
---|---|
author | Pelletier, Abigaelle Nelius, Eric Fan, Zheng Khatchatourova, Ekaterina Alvarado‐Diaz, Abdiel He, Jingyi Krzywinska, Ewelina Sobecki, Michal Nagarajan, Shunmugam Kerdiles, Yann Fandrey, Joachim Gotthardt, Dagmar Sexl, Veronika de Bock, Katrien Stockmann, Christian |
author_facet | Pelletier, Abigaelle Nelius, Eric Fan, Zheng Khatchatourova, Ekaterina Alvarado‐Diaz, Abdiel He, Jingyi Krzywinska, Ewelina Sobecki, Michal Nagarajan, Shunmugam Kerdiles, Yann Fandrey, Joachim Gotthardt, Dagmar Sexl, Veronika de Bock, Katrien Stockmann, Christian |
author_sort | Pelletier, Abigaelle |
collection | PubMed |
description | Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen‐sensitive transcription factors, the hypoxia‐inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring remains controversial. Activated NK cells are predominantly glycolytic, but the metabolic programs that ensure the maintenance of resting NK cells are enigmatic. By combining in situ metabolomic and transcriptomic analyses in resting murine NK cells, our study defines HIF‐1α as a regulator of tryptophan metabolism and cellular nicotinamide adenine dinucleotide (NAD(+)) levels. The HIF‐1α/NAD(+) axis prevents ROS production during oxidative phosphorylation (OxPhos) and thereby blocks DNA damage and NK cell apoptosis under steady‐state conditions. In contrast, in activated NK cells under hypoxia, HIF‐1α is required for glycolysis, and forced HIF‐1α expression boosts glycolysis and NK cell performance in vitro and in vivo. Our data highlight two distinct pathways by which HIF‐1α interferes with NK cell metabolism. While HIF‐1α‐driven glycolysis is essential for NK cell activation, resting NK cell homeostasis relies on HIF‐1α‐dependent tryptophan/NAD(+) metabolism. |
format | Online Article Text |
id | pubmed-10240188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102401882023-06-06 Resting natural killer cell homeostasis relies on tryptophan/NAD (+) metabolism and HIF‐1α Pelletier, Abigaelle Nelius, Eric Fan, Zheng Khatchatourova, Ekaterina Alvarado‐Diaz, Abdiel He, Jingyi Krzywinska, Ewelina Sobecki, Michal Nagarajan, Shunmugam Kerdiles, Yann Fandrey, Joachim Gotthardt, Dagmar Sexl, Veronika de Bock, Katrien Stockmann, Christian EMBO Rep Reports Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen‐sensitive transcription factors, the hypoxia‐inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring remains controversial. Activated NK cells are predominantly glycolytic, but the metabolic programs that ensure the maintenance of resting NK cells are enigmatic. By combining in situ metabolomic and transcriptomic analyses in resting murine NK cells, our study defines HIF‐1α as a regulator of tryptophan metabolism and cellular nicotinamide adenine dinucleotide (NAD(+)) levels. The HIF‐1α/NAD(+) axis prevents ROS production during oxidative phosphorylation (OxPhos) and thereby blocks DNA damage and NK cell apoptosis under steady‐state conditions. In contrast, in activated NK cells under hypoxia, HIF‐1α is required for glycolysis, and forced HIF‐1α expression boosts glycolysis and NK cell performance in vitro and in vivo. Our data highlight two distinct pathways by which HIF‐1α interferes with NK cell metabolism. While HIF‐1α‐driven glycolysis is essential for NK cell activation, resting NK cell homeostasis relies on HIF‐1α‐dependent tryptophan/NAD(+) metabolism. John Wiley and Sons Inc. 2023-03-29 /pmc/articles/PMC10240188/ /pubmed/36987917 http://dx.doi.org/10.15252/embr.202256156 Text en © 2023 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reports Pelletier, Abigaelle Nelius, Eric Fan, Zheng Khatchatourova, Ekaterina Alvarado‐Diaz, Abdiel He, Jingyi Krzywinska, Ewelina Sobecki, Michal Nagarajan, Shunmugam Kerdiles, Yann Fandrey, Joachim Gotthardt, Dagmar Sexl, Veronika de Bock, Katrien Stockmann, Christian Resting natural killer cell homeostasis relies on tryptophan/NAD (+) metabolism and HIF‐1α |
title | Resting natural killer cell homeostasis relies on tryptophan/NAD
(+) metabolism and HIF‐1α |
title_full | Resting natural killer cell homeostasis relies on tryptophan/NAD
(+) metabolism and HIF‐1α |
title_fullStr | Resting natural killer cell homeostasis relies on tryptophan/NAD
(+) metabolism and HIF‐1α |
title_full_unstemmed | Resting natural killer cell homeostasis relies on tryptophan/NAD
(+) metabolism and HIF‐1α |
title_short | Resting natural killer cell homeostasis relies on tryptophan/NAD
(+) metabolism and HIF‐1α |
title_sort | resting natural killer cell homeostasis relies on tryptophan/nad
(+) metabolism and hif‐1α |
topic | Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240188/ https://www.ncbi.nlm.nih.gov/pubmed/36987917 http://dx.doi.org/10.15252/embr.202256156 |
work_keys_str_mv | AT pelletierabigaelle restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT neliuseric restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT fanzheng restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT khatchatourovaekaterina restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT alvaradodiazabdiel restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT hejingyi restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT krzywinskaewelina restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT sobeckimichal restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT nagarajanshunmugam restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT kerdilesyann restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT fandreyjoachim restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT gotthardtdagmar restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT sexlveronika restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT debockkatrien restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a AT stockmannchristian restingnaturalkillercellhomeostasisreliesontryptophannadmetabolismandhif1a |