Cargando…

Melanoma in a patient with DNMT3A overgrowth syndrome

Alterations in epigenetic regulators are increasingly recognized as early events in tumorigenesis; thus, patients with acquired or inherited variants in epigenetic regulators may be at increased risk for developing multiple types of cancer. DNMT3A overgrowth syndrome (DOS), caused by germline pathog...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, David Y., Sutton, Leslie A., Ramakrishnan, Sai Mukund, Duncavage, Eric J., Heath, Sharon E., Compton, Leigh A., Miller, Christopher A., Ley, Timothy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240841/
https://www.ncbi.nlm.nih.gov/pubmed/37160317
http://dx.doi.org/10.1101/mcs.a006267
Descripción
Sumario:Alterations in epigenetic regulators are increasingly recognized as early events in tumorigenesis; thus, patients with acquired or inherited variants in epigenetic regulators may be at increased risk for developing multiple types of cancer. DNMT3A overgrowth syndrome (DOS), caused by germline pathogenic variants in the DNA methyltransferase gene DNMT3A, has been associated with a predisposition toward development of hematopoietic and neuronal malignancies. DNMT3A deficiency has been described to promote keratinocyte proliferation in mice. Although altered DNA methylation patterns are well-recognized in melanoma, the role of DNA methyltransferases in melanoma pathogenesis is not clear. We report the case of an adult DOS patient with a germline DNMT3A loss-of-function mutation, who developed an early-onset melanoma with regional lymph node metastatic disease. Exome sequencing of the primary tumor identified an additional acquired, missense DNMT3A mutation in the dominant tumor clone, suggesting that the loss of DNMT3A function was relevant for the development of this tumor.