Cargando…
Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier
Parvovirus B19 (B19V) is transmitted primarily via the respiratory route, however, the mechanism involved remains unknown. B19V targets a restricted receptor expressed in erythroid progenitor cells in the bone marrow. However, B19V shifts the receptor under acidic conditions and targets the widely e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241365/ https://www.ncbi.nlm.nih.gov/pubmed/37220143 http://dx.doi.org/10.1371/journal.ppat.1011402 |
_version_ | 1785053969648713728 |
---|---|
author | Suter, Corinne Colakovic, Minela Bieri, Jan Gultom, Mitra Dijkman, Ronald Ros, Carlos |
author_facet | Suter, Corinne Colakovic, Minela Bieri, Jan Gultom, Mitra Dijkman, Ronald Ros, Carlos |
author_sort | Suter, Corinne |
collection | PubMed |
description | Parvovirus B19 (B19V) is transmitted primarily via the respiratory route, however, the mechanism involved remains unknown. B19V targets a restricted receptor expressed in erythroid progenitor cells in the bone marrow. However, B19V shifts the receptor under acidic conditions and targets the widely expressed globoside. The pH-dependent interaction with globoside may allow virus entry through the naturally acidic nasal mucosa. To test this hypothesis, MDCK II cells and well-differentiated human airway epithelial cell (hAEC) cultures were grown on porous membranes and used as models to study the interaction of B19V with the epithelial barrier. Globoside expression was detected in polarized MDCK II cells and the ciliated cell population of well-differentiated hAEC cultures. Under the acidic conditions of the nasal mucosa, virus attachment and transcytosis occurred without productive infection. Neither virus attachment nor transcytosis was observed under neutral pH conditions or in globoside knockout cells, demonstrating the concerted role of globoside and acidic pH in the transcellular transport of B19V. Globoside-dependent virus uptake involved VP2 and occurred by a clathrin-independent pathway that is cholesterol and dynamin-dependent. This study provides mechanistic insight into the transmission of B19V through the respiratory route and reveals novel vulnerability factors of the epithelial barrier to viruses. |
format | Online Article Text |
id | pubmed-10241365 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-102413652023-06-06 Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier Suter, Corinne Colakovic, Minela Bieri, Jan Gultom, Mitra Dijkman, Ronald Ros, Carlos PLoS Pathog Research Article Parvovirus B19 (B19V) is transmitted primarily via the respiratory route, however, the mechanism involved remains unknown. B19V targets a restricted receptor expressed in erythroid progenitor cells in the bone marrow. However, B19V shifts the receptor under acidic conditions and targets the widely expressed globoside. The pH-dependent interaction with globoside may allow virus entry through the naturally acidic nasal mucosa. To test this hypothesis, MDCK II cells and well-differentiated human airway epithelial cell (hAEC) cultures were grown on porous membranes and used as models to study the interaction of B19V with the epithelial barrier. Globoside expression was detected in polarized MDCK II cells and the ciliated cell population of well-differentiated hAEC cultures. Under the acidic conditions of the nasal mucosa, virus attachment and transcytosis occurred without productive infection. Neither virus attachment nor transcytosis was observed under neutral pH conditions or in globoside knockout cells, demonstrating the concerted role of globoside and acidic pH in the transcellular transport of B19V. Globoside-dependent virus uptake involved VP2 and occurred by a clathrin-independent pathway that is cholesterol and dynamin-dependent. This study provides mechanistic insight into the transmission of B19V through the respiratory route and reveals novel vulnerability factors of the epithelial barrier to viruses. Public Library of Science 2023-05-23 /pmc/articles/PMC10241365/ /pubmed/37220143 http://dx.doi.org/10.1371/journal.ppat.1011402 Text en © 2023 Suter et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Suter, Corinne Colakovic, Minela Bieri, Jan Gultom, Mitra Dijkman, Ronald Ros, Carlos Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier |
title | Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier |
title_full | Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier |
title_fullStr | Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier |
title_full_unstemmed | Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier |
title_short | Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier |
title_sort | globoside and the mucosal ph mediate parvovirus b19 entry through the epithelial barrier |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241365/ https://www.ncbi.nlm.nih.gov/pubmed/37220143 http://dx.doi.org/10.1371/journal.ppat.1011402 |
work_keys_str_mv | AT sutercorinne globosideandthemucosalphmediateparvovirusb19entrythroughtheepithelialbarrier AT colakovicminela globosideandthemucosalphmediateparvovirusb19entrythroughtheepithelialbarrier AT bierijan globosideandthemucosalphmediateparvovirusb19entrythroughtheepithelialbarrier AT gultommitra globosideandthemucosalphmediateparvovirusb19entrythroughtheepithelialbarrier AT dijkmanronald globosideandthemucosalphmediateparvovirusb19entrythroughtheepithelialbarrier AT roscarlos globosideandthemucosalphmediateparvovirusb19entrythroughtheepithelialbarrier |