Cargando…

Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series

Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly s...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jiahong, Zhu, Xiaojing, Zhang, Jie, Li, Zhipeng, Kang, Wenjiang, He, Haibo, Wu, Zhilin, Dong, Zhengya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241968/
https://www.ncbi.nlm.nih.gov/pubmed/37257207
http://dx.doi.org/10.1016/j.ultsonch.2023.106451
_version_ 1785054107973713920
author Xu, Jiahong
Zhu, Xiaojing
Zhang, Jie
Li, Zhipeng
Kang, Wenjiang
He, Haibo
Wu, Zhilin
Dong, Zhengya
author_facet Xu, Jiahong
Zhu, Xiaojing
Zhang, Jie
Li, Zhipeng
Kang, Wenjiang
He, Haibo
Wu, Zhilin
Dong, Zhengya
author_sort Xu, Jiahong
collection PubMed
description Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly suffered from a low ultrasonic energy efficiency caused by the large acoustic impedance and energy consumption, subordinately confronted with a low throughput, complicated fabrication with complex structure and weak ultrasonic cavitation. Herein, we employed a typical ultrasonic microreactor (USMR) that ensured the high-efficient energy input and generated intense cavitation behavior for efficient breakage of droplets and continuous production of unified oil-in-water (O/W) nanoemulsions in a single cycle and without any pre-emulsification treatment. The emulsification was optimized by tuning the formula indexes, technological parameters, and numerical analysis using Response Surface Methodology (RSM), followed by a comparison with the emulsification by a traditional ultrasonic probe. The USMR exhibited superior emulsification efficiency and easy scale-up with remarkable uniformity by series mode. In addition, concurrent and uniform nanoemulsions with high throughput could also be achieved by a larger USMR with high ultrasonic power. Based on RSM analysis, uniform DS and PDI of 96.4 nm and 0.195 were observed under the optimal conditions, respectively, well consistent with the predicted values. Impressively, the optimal nanoemulsions have a uniform spherical morphology and exhibited superior stability, which held well in 45 days at 4℃ and 25℃. The results in the present work may provide a typical paradigm for the preparation of functional nanomaterials based on the novel and efficient emulsification tools.
format Online
Article
Text
id pubmed-10241968
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-102419682023-06-07 Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series Xu, Jiahong Zhu, Xiaojing Zhang, Jie Li, Zhipeng Kang, Wenjiang He, Haibo Wu, Zhilin Dong, Zhengya Ultrason Sonochem UC and HC intensification Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly suffered from a low ultrasonic energy efficiency caused by the large acoustic impedance and energy consumption, subordinately confronted with a low throughput, complicated fabrication with complex structure and weak ultrasonic cavitation. Herein, we employed a typical ultrasonic microreactor (USMR) that ensured the high-efficient energy input and generated intense cavitation behavior for efficient breakage of droplets and continuous production of unified oil-in-water (O/W) nanoemulsions in a single cycle and without any pre-emulsification treatment. The emulsification was optimized by tuning the formula indexes, technological parameters, and numerical analysis using Response Surface Methodology (RSM), followed by a comparison with the emulsification by a traditional ultrasonic probe. The USMR exhibited superior emulsification efficiency and easy scale-up with remarkable uniformity by series mode. In addition, concurrent and uniform nanoemulsions with high throughput could also be achieved by a larger USMR with high ultrasonic power. Based on RSM analysis, uniform DS and PDI of 96.4 nm and 0.195 were observed under the optimal conditions, respectively, well consistent with the predicted values. Impressively, the optimal nanoemulsions have a uniform spherical morphology and exhibited superior stability, which held well in 45 days at 4℃ and 25℃. The results in the present work may provide a typical paradigm for the preparation of functional nanomaterials based on the novel and efficient emulsification tools. Elsevier 2023-05-20 /pmc/articles/PMC10241968/ /pubmed/37257207 http://dx.doi.org/10.1016/j.ultsonch.2023.106451 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle UC and HC intensification
Xu, Jiahong
Zhu, Xiaojing
Zhang, Jie
Li, Zhipeng
Kang, Wenjiang
He, Haibo
Wu, Zhilin
Dong, Zhengya
Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series
title Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series
title_full Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series
title_fullStr Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series
title_full_unstemmed Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series
title_short Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series
title_sort nanoemulsification of soybean oil using ultrasonic microreactor: process optimization, scale-up and numbering-up in series
topic UC and HC intensification
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241968/
https://www.ncbi.nlm.nih.gov/pubmed/37257207
http://dx.doi.org/10.1016/j.ultsonch.2023.106451
work_keys_str_mv AT xujiahong nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries
AT zhuxiaojing nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries
AT zhangjie nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries
AT lizhipeng nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries
AT kangwenjiang nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries
AT hehaibo nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries
AT wuzhilin nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries
AT dongzhengya nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries