Cargando…
Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series
Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly s...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241968/ https://www.ncbi.nlm.nih.gov/pubmed/37257207 http://dx.doi.org/10.1016/j.ultsonch.2023.106451 |
_version_ | 1785054107973713920 |
---|---|
author | Xu, Jiahong Zhu, Xiaojing Zhang, Jie Li, Zhipeng Kang, Wenjiang He, Haibo Wu, Zhilin Dong, Zhengya |
author_facet | Xu, Jiahong Zhu, Xiaojing Zhang, Jie Li, Zhipeng Kang, Wenjiang He, Haibo Wu, Zhilin Dong, Zhengya |
author_sort | Xu, Jiahong |
collection | PubMed |
description | Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly suffered from a low ultrasonic energy efficiency caused by the large acoustic impedance and energy consumption, subordinately confronted with a low throughput, complicated fabrication with complex structure and weak ultrasonic cavitation. Herein, we employed a typical ultrasonic microreactor (USMR) that ensured the high-efficient energy input and generated intense cavitation behavior for efficient breakage of droplets and continuous production of unified oil-in-water (O/W) nanoemulsions in a single cycle and without any pre-emulsification treatment. The emulsification was optimized by tuning the formula indexes, technological parameters, and numerical analysis using Response Surface Methodology (RSM), followed by a comparison with the emulsification by a traditional ultrasonic probe. The USMR exhibited superior emulsification efficiency and easy scale-up with remarkable uniformity by series mode. In addition, concurrent and uniform nanoemulsions with high throughput could also be achieved by a larger USMR with high ultrasonic power. Based on RSM analysis, uniform DS and PDI of 96.4 nm and 0.195 were observed under the optimal conditions, respectively, well consistent with the predicted values. Impressively, the optimal nanoemulsions have a uniform spherical morphology and exhibited superior stability, which held well in 45 days at 4℃ and 25℃. The results in the present work may provide a typical paradigm for the preparation of functional nanomaterials based on the novel and efficient emulsification tools. |
format | Online Article Text |
id | pubmed-10241968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102419682023-06-07 Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series Xu, Jiahong Zhu, Xiaojing Zhang, Jie Li, Zhipeng Kang, Wenjiang He, Haibo Wu, Zhilin Dong, Zhengya Ultrason Sonochem UC and HC intensification Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly suffered from a low ultrasonic energy efficiency caused by the large acoustic impedance and energy consumption, subordinately confronted with a low throughput, complicated fabrication with complex structure and weak ultrasonic cavitation. Herein, we employed a typical ultrasonic microreactor (USMR) that ensured the high-efficient energy input and generated intense cavitation behavior for efficient breakage of droplets and continuous production of unified oil-in-water (O/W) nanoemulsions in a single cycle and without any pre-emulsification treatment. The emulsification was optimized by tuning the formula indexes, technological parameters, and numerical analysis using Response Surface Methodology (RSM), followed by a comparison with the emulsification by a traditional ultrasonic probe. The USMR exhibited superior emulsification efficiency and easy scale-up with remarkable uniformity by series mode. In addition, concurrent and uniform nanoemulsions with high throughput could also be achieved by a larger USMR with high ultrasonic power. Based on RSM analysis, uniform DS and PDI of 96.4 nm and 0.195 were observed under the optimal conditions, respectively, well consistent with the predicted values. Impressively, the optimal nanoemulsions have a uniform spherical morphology and exhibited superior stability, which held well in 45 days at 4℃ and 25℃. The results in the present work may provide a typical paradigm for the preparation of functional nanomaterials based on the novel and efficient emulsification tools. Elsevier 2023-05-20 /pmc/articles/PMC10241968/ /pubmed/37257207 http://dx.doi.org/10.1016/j.ultsonch.2023.106451 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | UC and HC intensification Xu, Jiahong Zhu, Xiaojing Zhang, Jie Li, Zhipeng Kang, Wenjiang He, Haibo Wu, Zhilin Dong, Zhengya Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series |
title | Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series |
title_full | Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series |
title_fullStr | Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series |
title_full_unstemmed | Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series |
title_short | Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series |
title_sort | nanoemulsification of soybean oil using ultrasonic microreactor: process optimization, scale-up and numbering-up in series |
topic | UC and HC intensification |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241968/ https://www.ncbi.nlm.nih.gov/pubmed/37257207 http://dx.doi.org/10.1016/j.ultsonch.2023.106451 |
work_keys_str_mv | AT xujiahong nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries AT zhuxiaojing nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries AT zhangjie nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries AT lizhipeng nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries AT kangwenjiang nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries AT hehaibo nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries AT wuzhilin nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries AT dongzhengya nanoemulsificationofsoybeanoilusingultrasonicmicroreactorprocessoptimizationscaleupandnumberingupinseries |