Cargando…
MicroRNA-27a-3p enhances the inflammatory phenotype of Juvenile Idiopathic Arthritis fibroblast-like synoviocytes
BACKGROUND: Juvenile Idiopathic Arthritis (JIA) is the most prevalent chronic pediatric rheumatic disorder. In joints of JIA patients, aggressive phenotypic changes in fibroblast-like synoviocytes (FLS) of the synovial lining play a key role in inflammation. MicroRNAs are dysregulated in rheumatoid...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243012/ https://www.ncbi.nlm.nih.gov/pubmed/37277817 http://dx.doi.org/10.1186/s12969-023-00833-8 |
Sumario: | BACKGROUND: Juvenile Idiopathic Arthritis (JIA) is the most prevalent chronic pediatric rheumatic disorder. In joints of JIA patients, aggressive phenotypic changes in fibroblast-like synoviocytes (FLS) of the synovial lining play a key role in inflammation. MicroRNAs are dysregulated in rheumatoid arthritis and JIA, including miR-27a-3p. However, it is not understood if miR-27a-3p, enriched in JIA synovial fluid (SF) and leukocytes, alters FLS function. METHODS: Primary JIA FLS cells were transfected with a miR-27a-3p mimic or a negative control microRNA (miR-NC) and stimulated with pooled JIA SF or inflammatory cytokines. Viability and apoptosis were analyzed by flow cytometry. Proliferation was evaluated using a (3)H-thymidine incorporation assay. Cytokine production was assessed by qPCR and ELISA. Expression of TGF-β pathway genes was determined using a qPCR array. RESULTS: MiR-27a-3p was constitutively expressed in FLS. Overexpression of miR-27a-3p caused increased interleukin-8 secretion in resting FLS, and interleukin-6 was elevated in SF-activated FLS compared to miR-NC. Furthermore, stimulation with pro-inflammatory cytokines augmented FLS proliferation in miR-27a-3p-transfected FLS relative to miR-NC. Expression of multiple TGF-β pathway genes was modulated by overexpression of miR-27a-3p. CONCLUSIONS: MiR-27a-3p significantly contributes to FLS proliferation and cytokine production, making it a potential candidate for epigenetic therapy that targets FLS in arthritis. |
---|