Cargando…

scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yingxin, Wu, Tung-Yu, Chen, Xi, Wan, Sheng, Chao, Brian, Xin, Jingxue, Yang, Jean Y.H., Wong, Wing H., Wang, Y. X. Rachel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245711/
https://www.ncbi.nlm.nih.gov/pubmed/37292801
http://dx.doi.org/10.1101/2023.05.18.541381
_version_ 1785054913246527488
author Lin, Yingxin
Wu, Tung-Yu
Chen, Xi
Wan, Sheng
Chao, Brian
Xin, Jingxue
Yang, Jean Y.H.
Wong, Wing H.
Wang, Y. X. Rachel
author_facet Lin, Yingxin
Wu, Tung-Yu
Chen, Xi
Wan, Sheng
Chao, Brian
Xin, Jingxue
Yang, Jean Y.H.
Wong, Wing H.
Wang, Y. X. Rachel
author_sort Lin, Yingxin
collection PubMed
description Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal datasets, we demonstrate scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome dataset we generated from differentiating mouse embryonic stem cells over time, we demonstrate scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes.
format Online
Article
Text
id pubmed-10245711
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-102457112023-06-08 scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data Lin, Yingxin Wu, Tung-Yu Chen, Xi Wan, Sheng Chao, Brian Xin, Jingxue Yang, Jean Y.H. Wong, Wing H. Wang, Y. X. Rachel bioRxiv Article Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal datasets, we demonstrate scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome dataset we generated from differentiating mouse embryonic stem cells over time, we demonstrate scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes. Cold Spring Harbor Laboratory 2023-05-22 /pmc/articles/PMC10245711/ /pubmed/37292801 http://dx.doi.org/10.1101/2023.05.18.541381 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Lin, Yingxin
Wu, Tung-Yu
Chen, Xi
Wan, Sheng
Chao, Brian
Xin, Jingxue
Yang, Jean Y.H.
Wong, Wing H.
Wang, Y. X. Rachel
scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data
title scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data
title_full scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data
title_fullStr scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data
title_full_unstemmed scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data
title_short scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data
title_sort sctie: data integration and inference of gene regulation using single-cell temporal multimodal data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245711/
https://www.ncbi.nlm.nih.gov/pubmed/37292801
http://dx.doi.org/10.1101/2023.05.18.541381
work_keys_str_mv AT linyingxin sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata
AT wutungyu sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata
AT chenxi sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata
AT wansheng sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata
AT chaobrian sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata
AT xinjingxue sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata
AT yangjeanyh sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata
AT wongwingh sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata
AT wangyxrachel sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata