Cargando…
scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data
Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate ce...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245711/ https://www.ncbi.nlm.nih.gov/pubmed/37292801 http://dx.doi.org/10.1101/2023.05.18.541381 |
_version_ | 1785054913246527488 |
---|---|
author | Lin, Yingxin Wu, Tung-Yu Chen, Xi Wan, Sheng Chao, Brian Xin, Jingxue Yang, Jean Y.H. Wong, Wing H. Wang, Y. X. Rachel |
author_facet | Lin, Yingxin Wu, Tung-Yu Chen, Xi Wan, Sheng Chao, Brian Xin, Jingxue Yang, Jean Y.H. Wong, Wing H. Wang, Y. X. Rachel |
author_sort | Lin, Yingxin |
collection | PubMed |
description | Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal datasets, we demonstrate scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome dataset we generated from differentiating mouse embryonic stem cells over time, we demonstrate scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes. |
format | Online Article Text |
id | pubmed-10245711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-102457112023-06-08 scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data Lin, Yingxin Wu, Tung-Yu Chen, Xi Wan, Sheng Chao, Brian Xin, Jingxue Yang, Jean Y.H. Wong, Wing H. Wang, Y. X. Rachel bioRxiv Article Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal datasets, we demonstrate scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome dataset we generated from differentiating mouse embryonic stem cells over time, we demonstrate scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes. Cold Spring Harbor Laboratory 2023-05-22 /pmc/articles/PMC10245711/ /pubmed/37292801 http://dx.doi.org/10.1101/2023.05.18.541381 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Lin, Yingxin Wu, Tung-Yu Chen, Xi Wan, Sheng Chao, Brian Xin, Jingxue Yang, Jean Y.H. Wong, Wing H. Wang, Y. X. Rachel scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data |
title | scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data |
title_full | scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data |
title_fullStr | scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data |
title_full_unstemmed | scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data |
title_short | scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data |
title_sort | sctie: data integration and inference of gene regulation using single-cell temporal multimodal data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245711/ https://www.ncbi.nlm.nih.gov/pubmed/37292801 http://dx.doi.org/10.1101/2023.05.18.541381 |
work_keys_str_mv | AT linyingxin sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata AT wutungyu sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata AT chenxi sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata AT wansheng sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata AT chaobrian sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata AT xinjingxue sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata AT yangjeanyh sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata AT wongwingh sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata AT wangyxrachel sctiedataintegrationandinferenceofgeneregulationusingsinglecelltemporalmultimodaldata |