Cargando…

Predicting structures of large protein assemblies using combinatorial assembly algorithm and AlphaFold2

Deep learning models, such as AlphaFold2 and RosettaFold, enable high-accuracy protein structure prediction. However, large protein complexes are still challenging to predict due to their size and the complexity of interactions between multiple subunits. Here we present CombFold, a combinatorial and...

Descripción completa

Detalles Bibliográficos
Autores principales: Shor, Ben, Schneidman-Duhovny, Dina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245790/
https://www.ncbi.nlm.nih.gov/pubmed/37293053
http://dx.doi.org/10.1101/2023.05.16.541003
Descripción
Sumario:Deep learning models, such as AlphaFold2 and RosettaFold, enable high-accuracy protein structure prediction. However, large protein complexes are still challenging to predict due to their size and the complexity of interactions between multiple subunits. Here we present CombFold, a combinatorial and hierarchical assembly algorithm for predicting structures of large protein complexes utilizing pairwise interactions between subunits predicted by AlphaFold2. CombFold accurately predicted (TM-score > 0.7) 72% of the complexes among the Top-10 predictions in two datasets of 60 large, asymmetric assemblies. Moreover, the structural coverage of predicted complexes was 20% higher compared to corresponding PDB entries. We applied the method on complexes from Complex Portal with known stoichiometry but without known structure and obtained high-confidence predictions. CombFold supports the integration of distance restraints based on crosslinking mass spectrometry and fast enumeration of possible complex stoichiometries. CombFold’s high accuracy makes it a promising tool for expanding structural coverage beyond monomeric proteins.