Cargando…
Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. Susceptibility rapidly declines with age, associated with changes in the microbiota. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites enri...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245909/ https://www.ncbi.nlm.nih.gov/pubmed/37292732 http://dx.doi.org/10.1101/2023.05.25.542157 |
_version_ | 1785054944863191040 |
---|---|
author | Funkhouser-Jones, Lisa J. Xu, Rui Wilke, Georgia Fu, Yong Shriefer, Lawrence A. Makimaa, Heyde Rodgers, Rachel Kennedy, Elizabeth A. VanDussen, Kelli L. Stappenbeck, Thaddeus S. Baldridge, Megan T. Sibley, L. David |
author_facet | Funkhouser-Jones, Lisa J. Xu, Rui Wilke, Georgia Fu, Yong Shriefer, Lawrence A. Makimaa, Heyde Rodgers, Rachel Kennedy, Elizabeth A. VanDussen, Kelli L. Stappenbeck, Thaddeus S. Baldridge, Megan T. Sibley, L. David |
author_sort | Funkhouser-Jones, Lisa J. |
collection | PubMed |
description | Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. Susceptibility rapidly declines with age, associated with changes in the microbiota. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites enriched in the adult gut for their effects on C. parvum growth in vitro. We identified eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B(6) precursor, and indoles. Growth restriction of C. parvum by indoles did not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impaired host mitochondrial function and reduced total cellular ATP, as well as directly reduced the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole producing bacteria, delayed life cycle progression of the parasite in vitro and reduced severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites contribute to colonization resistance to Cryptosporidium infection. |
format | Online Article Text |
id | pubmed-10245909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-102459092023-06-08 Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth Funkhouser-Jones, Lisa J. Xu, Rui Wilke, Georgia Fu, Yong Shriefer, Lawrence A. Makimaa, Heyde Rodgers, Rachel Kennedy, Elizabeth A. VanDussen, Kelli L. Stappenbeck, Thaddeus S. Baldridge, Megan T. Sibley, L. David bioRxiv Article Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. Susceptibility rapidly declines with age, associated with changes in the microbiota. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites enriched in the adult gut for their effects on C. parvum growth in vitro. We identified eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B(6) precursor, and indoles. Growth restriction of C. parvum by indoles did not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impaired host mitochondrial function and reduced total cellular ATP, as well as directly reduced the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole producing bacteria, delayed life cycle progression of the parasite in vitro and reduced severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites contribute to colonization resistance to Cryptosporidium infection. Cold Spring Harbor Laboratory 2023-05-25 /pmc/articles/PMC10245909/ /pubmed/37292732 http://dx.doi.org/10.1101/2023.05.25.542157 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Funkhouser-Jones, Lisa J. Xu, Rui Wilke, Georgia Fu, Yong Shriefer, Lawrence A. Makimaa, Heyde Rodgers, Rachel Kennedy, Elizabeth A. VanDussen, Kelli L. Stappenbeck, Thaddeus S. Baldridge, Megan T. Sibley, L. David Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth |
title | Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth |
title_full | Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth |
title_fullStr | Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth |
title_full_unstemmed | Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth |
title_short | Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth |
title_sort | microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit cryptosporidium parvum growth |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245909/ https://www.ncbi.nlm.nih.gov/pubmed/37292732 http://dx.doi.org/10.1101/2023.05.25.542157 |
work_keys_str_mv | AT funkhouserjoneslisaj microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT xurui microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT wilkegeorgia microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT fuyong microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT shrieferlawrencea microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT makimaaheyde microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT rodgersrachel microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT kennedyelizabetha microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT vandussenkellil microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT stappenbeckthaddeuss microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT baldridgemegant microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth AT sibleyldavid microbiotaproducedindolemetabolitesdisrupthostcellmitochondrialenergyproductionandinhibitcryptosporidiumparvumgrowth |