Cargando…

The GET pathway is a major bottleneck for maintaining proteostasis in Saccharomyces cerevisiae

A hallmark of aging in a variety of organisms is a breakdown of proteostasis and an ensuing accumulation of protein aggregates and inclusions. However, it is not clear if the proteostasis network suffers from a uniform breakdown during aging or if some distinct components act as bottlenecks especial...

Descripción completa

Detalles Bibliográficos
Autores principales: Josefson, Rebecca, Kumar, Navinder, Hao, Xinxin, Liu, Beidong, Nyström, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247811/
https://www.ncbi.nlm.nih.gov/pubmed/37286562
http://dx.doi.org/10.1038/s41598-023-35666-8
Descripción
Sumario:A hallmark of aging in a variety of organisms is a breakdown of proteostasis and an ensuing accumulation of protein aggregates and inclusions. However, it is not clear if the proteostasis network suffers from a uniform breakdown during aging or if some distinct components act as bottlenecks especially sensitive to functional decline. Here, we report on a genome-wide, unbiased, screen for single genes in young cells of budding yeast required to keep the proteome aggregate-free under non-stress conditions as a means to identify potential proteostasis bottlenecks. We found that the GET pathway, required for the insertion of tail-anchored (TA) membrane proteins in the endoplasmic reticulum, is such a bottleneck as single mutations in either GET3, GET2 or GET1 caused accumulation of cytosolic Hsp104- and mitochondria-associated aggregates in nearly all cells when growing at 30 °C (non-stress condition). Further, results generated by a second screen identifying proteins aggregating in GET mutants and analyzing the behavior of cytosolic reporters of misfolding, suggest that there is a general collapse in proteostasis in GET mutants that affects other proteins than TA proteins.