Cargando…
Ketone α-alkylation at the more-hindered site
Control of the regioselectivity of α-alkylation of carbonyl compounds is a longstanding topic of research in organic chemistry. By using stoichiometric bulky strong bases and carefully adjusting the reaction conditions, selective alkylation of unsymmetrical ketones at less-hindered α-sites has been...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247815/ https://www.ncbi.nlm.nih.gov/pubmed/37286579 http://dx.doi.org/10.1038/s41467-023-38741-w |
Sumario: | Control of the regioselectivity of α-alkylation of carbonyl compounds is a longstanding topic of research in organic chemistry. By using stoichiometric bulky strong bases and carefully adjusting the reaction conditions, selective alkylation of unsymmetrical ketones at less-hindered α-sites has been achieved. In contrast, selective alkylation of such ketones at more-hindered α-sites remains a persistent challenge. Here we report a nickel-catalysed alkylation of unsymmetrical ketones at the more-hindered α-sites with allylic alcohols. Our results indicate that the space-constrained nickel catalyst bearing a bulky biphenyl diphosphine ligand enables the preferential alkylation of the more-substituted enolate over the less-substituted enolate and reverses the conventional regioselectivity of ketone α-alkylation. The reactions proceed under neutral conditions in the absence of additives, and water is the only byproduct. The method has a broad substrate scope and permits late-stage modification of ketone-containing natural products and bioactive compounds. |
---|