Cargando…
Stretch-Induced Down-Regulation of HCN2 Suppresses Contractile Activity
Although hyperpolarization-activated and cyclic nucleotide-gated 2 channels (HCN2) are expressed in multiple cell types in the gut, the role of HCN2 in intestinal motility is poorly understood. HCN2 is down-regulated in intestinal smooth muscle in a rodent model of ileus. Thus, the purpose of this s...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254498/ https://www.ncbi.nlm.nih.gov/pubmed/37298834 http://dx.doi.org/10.3390/molecules28114359 |
_version_ | 1785056658322358272 |
---|---|
author | Kola, Job Baffin Turarova, Botagoz Csige, Dora Sipos, Ádám Varga, Luca Gergely, Bence Refai, Farah Al Uray, Iván P. Docsa, Tibor Uray, Karen |
author_facet | Kola, Job Baffin Turarova, Botagoz Csige, Dora Sipos, Ádám Varga, Luca Gergely, Bence Refai, Farah Al Uray, Iván P. Docsa, Tibor Uray, Karen |
author_sort | Kola, Job Baffin |
collection | PubMed |
description | Although hyperpolarization-activated and cyclic nucleotide-gated 2 channels (HCN2) are expressed in multiple cell types in the gut, the role of HCN2 in intestinal motility is poorly understood. HCN2 is down-regulated in intestinal smooth muscle in a rodent model of ileus. Thus, the purpose of this study was to determine the effects of HCN inhibition on intestinal motility. HCN inhibition with ZD7288 or zatebradine significantly suppressed both spontaneous and agonist-induced contractile activity in the small intestine in a dose-dependent and tetrodotoxin-independent manner. HCN inhibition significantly suppressed intestinal tone but not contractile amplitude. The calcium sensitivity of contractile activity was significantly suppressed by HCN inhibition. Inflammatory mediators did not affect the suppression of intestinal contractile activity by HCN inhibition but increased stretch of the intestinal tissue partially attenuated the effects of HCN inhibition on agonist-induced intestinal contractile activity. HCN2 protein and mRNA levels in intestinal smooth muscle tissue were significantly down-regulated by increased mechanical stretch compared to unstretched tissue. Increased cyclical stretch down-regulated HCN2 protein and mRNA levels in primary human intestinal smooth muscle cells and macrophages. Overall, our results suggest that decreased HCN2 expression induced by mechanical signals, such as intestinal wall distension or edema development, may contribute to the development of ileus. |
format | Online Article Text |
id | pubmed-10254498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102544982023-06-10 Stretch-Induced Down-Regulation of HCN2 Suppresses Contractile Activity Kola, Job Baffin Turarova, Botagoz Csige, Dora Sipos, Ádám Varga, Luca Gergely, Bence Refai, Farah Al Uray, Iván P. Docsa, Tibor Uray, Karen Molecules Article Although hyperpolarization-activated and cyclic nucleotide-gated 2 channels (HCN2) are expressed in multiple cell types in the gut, the role of HCN2 in intestinal motility is poorly understood. HCN2 is down-regulated in intestinal smooth muscle in a rodent model of ileus. Thus, the purpose of this study was to determine the effects of HCN inhibition on intestinal motility. HCN inhibition with ZD7288 or zatebradine significantly suppressed both spontaneous and agonist-induced contractile activity in the small intestine in a dose-dependent and tetrodotoxin-independent manner. HCN inhibition significantly suppressed intestinal tone but not contractile amplitude. The calcium sensitivity of contractile activity was significantly suppressed by HCN inhibition. Inflammatory mediators did not affect the suppression of intestinal contractile activity by HCN inhibition but increased stretch of the intestinal tissue partially attenuated the effects of HCN inhibition on agonist-induced intestinal contractile activity. HCN2 protein and mRNA levels in intestinal smooth muscle tissue were significantly down-regulated by increased mechanical stretch compared to unstretched tissue. Increased cyclical stretch down-regulated HCN2 protein and mRNA levels in primary human intestinal smooth muscle cells and macrophages. Overall, our results suggest that decreased HCN2 expression induced by mechanical signals, such as intestinal wall distension or edema development, may contribute to the development of ileus. MDPI 2023-05-26 /pmc/articles/PMC10254498/ /pubmed/37298834 http://dx.doi.org/10.3390/molecules28114359 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kola, Job Baffin Turarova, Botagoz Csige, Dora Sipos, Ádám Varga, Luca Gergely, Bence Refai, Farah Al Uray, Iván P. Docsa, Tibor Uray, Karen Stretch-Induced Down-Regulation of HCN2 Suppresses Contractile Activity |
title | Stretch-Induced Down-Regulation of HCN2 Suppresses Contractile Activity |
title_full | Stretch-Induced Down-Regulation of HCN2 Suppresses Contractile Activity |
title_fullStr | Stretch-Induced Down-Regulation of HCN2 Suppresses Contractile Activity |
title_full_unstemmed | Stretch-Induced Down-Regulation of HCN2 Suppresses Contractile Activity |
title_short | Stretch-Induced Down-Regulation of HCN2 Suppresses Contractile Activity |
title_sort | stretch-induced down-regulation of hcn2 suppresses contractile activity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254498/ https://www.ncbi.nlm.nih.gov/pubmed/37298834 http://dx.doi.org/10.3390/molecules28114359 |
work_keys_str_mv | AT kolajobbaffin stretchinduceddownregulationofhcn2suppressescontractileactivity AT turarovabotagoz stretchinduceddownregulationofhcn2suppressescontractileactivity AT csigedora stretchinduceddownregulationofhcn2suppressescontractileactivity AT siposadam stretchinduceddownregulationofhcn2suppressescontractileactivity AT vargaluca stretchinduceddownregulationofhcn2suppressescontractileactivity AT gergelybence stretchinduceddownregulationofhcn2suppressescontractileactivity AT refaifarahal stretchinduceddownregulationofhcn2suppressescontractileactivity AT urayivanp stretchinduceddownregulationofhcn2suppressescontractileactivity AT docsatibor stretchinduceddownregulationofhcn2suppressescontractileactivity AT uraykaren stretchinduceddownregulationofhcn2suppressescontractileactivity |