Cargando…
Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets
The use of Riemannian geometry decoding algorithms in classifying electroencephalography-based motor-imagery brain–computer interfaces (BCIs) trials is relatively new and promises to outperform the current state-of-the-art methods by overcoming the noise and nonstationarity of electroencephalography...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255410/ https://www.ncbi.nlm.nih.gov/pubmed/37299779 http://dx.doi.org/10.3390/s23115051 |