Cargando…
A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning
In real-world applications, multiple robots need to be dynamically deployed to their appropriate locations as teams while the distance cost between robots and goals is minimized, which is known to be an NP-hard problem. In this paper, a new framework of team-based multi-robot task allocation and pat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255652/ https://www.ncbi.nlm.nih.gov/pubmed/37299829 http://dx.doi.org/10.3390/s23115103 |
_version_ | 1785056923606843392 |
---|---|
author | Lei, Tingjun Chintam, Pradeep Luo, Chaomin Liu, Lantao Jan, Gene Eu |
author_facet | Lei, Tingjun Chintam, Pradeep Luo, Chaomin Liu, Lantao Jan, Gene Eu |
author_sort | Lei, Tingjun |
collection | PubMed |
description | In real-world applications, multiple robots need to be dynamically deployed to their appropriate locations as teams while the distance cost between robots and goals is minimized, which is known to be an NP-hard problem. In this paper, a new framework of team-based multi-robot task allocation and path planning is developed for robot exploration missions through a convex optimization-based distance optimal model. A new distance optimal model is proposed to minimize the traveled distance between robots and their goals. The proposed framework fuses task decomposition, allocation, local sub-task allocation, and path planning. To begin, multiple robots are firstly divided and clustered into a variety of teams considering interrelation and dependencies of robots, and task decomposition. Secondly, the teams with various arbitrary shape enclosing intercorrelative robots are approximated and relaxed into circles, which are mathematically formulated to convex optimization problems to minimize the distance between teams, as well as between a robot and their goals. Once the robot teams are deployed into their appropriate locations, the robot locations are further refined by a graph-based Delaunay triangulation method. Thirdly, in the team, a self-organizing map-based neural network (SOMNN) paradigm is developed to complete the dynamical sub-task allocation and path planning, in which the robots are dynamically assigned to their nearby goals locally. Simulation and comparison studies demonstrate the proposed hybrid multi-robot task allocation and path planning framework is effective and efficient. |
format | Online Article Text |
id | pubmed-10255652 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102556522023-06-10 A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning Lei, Tingjun Chintam, Pradeep Luo, Chaomin Liu, Lantao Jan, Gene Eu Sensors (Basel) Article In real-world applications, multiple robots need to be dynamically deployed to their appropriate locations as teams while the distance cost between robots and goals is minimized, which is known to be an NP-hard problem. In this paper, a new framework of team-based multi-robot task allocation and path planning is developed for robot exploration missions through a convex optimization-based distance optimal model. A new distance optimal model is proposed to minimize the traveled distance between robots and their goals. The proposed framework fuses task decomposition, allocation, local sub-task allocation, and path planning. To begin, multiple robots are firstly divided and clustered into a variety of teams considering interrelation and dependencies of robots, and task decomposition. Secondly, the teams with various arbitrary shape enclosing intercorrelative robots are approximated and relaxed into circles, which are mathematically formulated to convex optimization problems to minimize the distance between teams, as well as between a robot and their goals. Once the robot teams are deployed into their appropriate locations, the robot locations are further refined by a graph-based Delaunay triangulation method. Thirdly, in the team, a self-organizing map-based neural network (SOMNN) paradigm is developed to complete the dynamical sub-task allocation and path planning, in which the robots are dynamically assigned to their nearby goals locally. Simulation and comparison studies demonstrate the proposed hybrid multi-robot task allocation and path planning framework is effective and efficient. MDPI 2023-05-26 /pmc/articles/PMC10255652/ /pubmed/37299829 http://dx.doi.org/10.3390/s23115103 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lei, Tingjun Chintam, Pradeep Luo, Chaomin Liu, Lantao Jan, Gene Eu A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning |
title | A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning |
title_full | A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning |
title_fullStr | A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning |
title_full_unstemmed | A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning |
title_short | A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning |
title_sort | convex optimization approach to multi-robot task allocation and path planning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255652/ https://www.ncbi.nlm.nih.gov/pubmed/37299829 http://dx.doi.org/10.3390/s23115103 |
work_keys_str_mv | AT leitingjun aconvexoptimizationapproachtomultirobottaskallocationandpathplanning AT chintampradeep aconvexoptimizationapproachtomultirobottaskallocationandpathplanning AT luochaomin aconvexoptimizationapproachtomultirobottaskallocationandpathplanning AT liulantao aconvexoptimizationapproachtomultirobottaskallocationandpathplanning AT jangeneeu aconvexoptimizationapproachtomultirobottaskallocationandpathplanning AT leitingjun convexoptimizationapproachtomultirobottaskallocationandpathplanning AT chintampradeep convexoptimizationapproachtomultirobottaskallocationandpathplanning AT luochaomin convexoptimizationapproachtomultirobottaskallocationandpathplanning AT liulantao convexoptimizationapproachtomultirobottaskallocationandpathplanning AT jangeneeu convexoptimizationapproachtomultirobottaskallocationandpathplanning |