Cargando…

Vision-Based Recognition of Human Motion Intent during Staircase Approaching

Walking in real-world environments involves constant decision-making, e.g., when approaching a staircase, an individual decides whether to engage (climbing the stairs) or avoid. For the control of assistive robots (e.g., robotic lower-limb prostheses), recognizing such motion intent is an important...

Descripción completa

Detalles Bibliográficos
Autores principales: Islam, Md Rafi, Haque, Md Rejwanul, Imtiaz, Masudul H., Shen, Xiangrong, Sazonov, Edward
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256100/
https://www.ncbi.nlm.nih.gov/pubmed/37300082
http://dx.doi.org/10.3390/s23115355
Descripción
Sumario:Walking in real-world environments involves constant decision-making, e.g., when approaching a staircase, an individual decides whether to engage (climbing the stairs) or avoid. For the control of assistive robots (e.g., robotic lower-limb prostheses), recognizing such motion intent is an important but challenging task, primarily due to the lack of available information. This paper presents a novel vision-based method to recognize an individual’s motion intent when approaching a staircase before the potential transition of motion mode (walking to stair climbing) occurs. Leveraging the egocentric images from a head-mounted camera, the authors trained a YOLOv5 object detection model to detect staircases. Subsequently, an AdaBoost and gradient boost (GB) classifier was developed to recognize the individual’s intention of engaging or avoiding the upcoming stairway. This novel method has been demonstrated to provide reliable (97.69%) recognition at least 2 steps before the potential mode transition, which is expected to provide ample time for the controller mode transition in an assistive robot in real-world use.