Cargando…
Balancing Nonsense Mutation Readthrough and Toxicity of Designer Aminoglycosides for Treatment of Genetic Diseases
[Image: see text] New derivatives of aminoglycosides with a side chain 1,2-aminoalcohol at the 5” position of ring III were designed, synthesized, and biologically evaluated. The novel lead structure (compound 6), exhibiting substantially enhanced selectivity toward eukaryotic versus prokaryotic rib...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258827/ https://www.ncbi.nlm.nih.gov/pubmed/37312846 http://dx.doi.org/10.1021/acsmedchemlett.3c00089 |
Sumario: | [Image: see text] New derivatives of aminoglycosides with a side chain 1,2-aminoalcohol at the 5” position of ring III were designed, synthesized, and biologically evaluated. The novel lead structure (compound 6), exhibiting substantially enhanced selectivity toward eukaryotic versus prokaryotic ribosome, high readthrough activity, and considerably lower toxicity than the previous lead compounds, was discovered. Balanced readthrough activity and toxicity of 6 were demonstrated in three different nonsense DNA-constructs underlying the genetic diseases, cystic fibrosis and Usher syndrome, and in two different cell lines, baby hamster kidney and human embryonic kidney cells. Molecular dynamics simulations within the A site of the 80S yeast ribosome demonstrated a remarkable kinetic stability of 6, which potentially determines its high readthrough activity. |
---|