Cargando…

Dynamics of Sequence and Structural Cell-Free DNA Landscapes in Small-Cell Lung Cancer

PURPOSE: Patients with small-cell lung cancer (SCLC) have an exceptionally poor prognosis, calling for improved real-time noninvasive biomarkers of therapeutic response. EXPERIMENTAL DESIGN: We performed targeted error-correction sequencing on 171 serial plasmas and matched white blood cell (WBC) DN...

Descripción completa

Detalles Bibliográficos
Autores principales: Sivapalan, Lavanya, Iams, Wade T., Belcaid, Zineb, Scott, Susan C., Niknafs, Noushin, Balan, Archana, White, James R., Kopparapu, Prasad, Cann, Christopher, Landon, Blair V., Pereira, Gavin, Velculescu, Victor E., Hann, Christine L., Lovly, Christine M., Anagnostou, Valsamo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261918/
https://www.ncbi.nlm.nih.gov/pubmed/37071497
http://dx.doi.org/10.1158/1078-0432.CCR-22-2242
Descripción
Sumario:PURPOSE: Patients with small-cell lung cancer (SCLC) have an exceptionally poor prognosis, calling for improved real-time noninvasive biomarkers of therapeutic response. EXPERIMENTAL DESIGN: We performed targeted error-correction sequencing on 171 serial plasmas and matched white blood cell (WBC) DNA from 33 patients with metastatic SCLC who received treatment with chemotherapy (n = 16) or immunotherapy-containing (n = 17) regimens. Tumor-derived sequence alterations and plasma aneuploidy were evaluated serially and combined to assess changes in total cell-free tumor load (cfTL). Longitudinal dynamic changes in cfTL were monitored to determine circulating cell-free tumor DNA (ctDNA) molecular response during therapy. RESULTS: Combined tiered analyses of tumor-derived sequence alterations and plasma aneuploidy allowed for the assessment of ctDNA molecular response in all patients. Patients classified as molecular responders (n = 9) displayed sustained elimination of cfTL to undetectable levels. For 14 patients, we observed initial molecular responses, followed by ctDNA recrudescence. A subset of patients (n = 10) displayed a clear pattern of molecular progression, with persistence of cfTL across all time points. Molecular responses captured the therapeutic effect and long-term clinical outcomes in a more accurate and rapid manner compared with radiographic imaging. Patients with sustained molecular responses had longer overall (log-rank P = 0.0006) and progression-free (log-rank P < 0.0001) survival, with molecular responses detected on average 4 weeks earlier than imaging. CONCLUSIONS: ctDNA analyses provide a precise approach for the assessment of early on-therapy molecular responses and have important implications for the management of patients with SCLC, including the development of improved strategies for real-time tumor burden monitoring. See related commentary by Pellini and Chaudhuri, p. 2176