Cargando…
Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels
Introduction: As the third generation of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), osimertinib has demonstrated more significant cardiotoxicity than previous generations of EGFR-TKIs. Investigating the mechanism of osimertinib cardiotoxicity can provide a reference for a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267729/ https://www.ncbi.nlm.nih.gov/pubmed/37324483 http://dx.doi.org/10.3389/fphar.2023.1177003 |
_version_ | 1785058986658103296 |
---|---|
author | Li, Peiwen Tian, Xiaohui Wang, Gongxin Jiang, Enshe Li, Yanming Hao, Guoliang |
author_facet | Li, Peiwen Tian, Xiaohui Wang, Gongxin Jiang, Enshe Li, Yanming Hao, Guoliang |
author_sort | Li, Peiwen |
collection | PubMed |
description | Introduction: As the third generation of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), osimertinib has demonstrated more significant cardiotoxicity than previous generations of EGFR-TKIs. Investigating the mechanism of osimertinib cardiotoxicity can provide a reference for a comprehensive understanding of osimertinib-induced cardiotoxicity and the safety of the usage of this drug in clinical practice. Methods: Multichannel electrical mapping with synchronous ECG recording was used to investigate the effects of varying osimertinib concentrations on electrophysiological indicators in isolated Langendorff-perfused hearts of guinea pigs. Additionally, a whole-cell patch clamp was used to detect the impact of osimertinib on the currents of hERG channels transfected into HEK293 cells and the Nav1.5 channel transfected into Chinese hamster ovary cells and acute isolated ventricular myocytes from SD rats. Results: Acute exposure to varying osimertinib concentrations produced prolongation in the PR interval, QT interval, and QRS complex in isolated hearts of guinea pigs. Meanwhile, this exposure could concentration-dependently increase the conduction time in the left atrium, left ventricle, and atrioventricular without affecting the left ventricle conduction velocity. Osimertinib inhibited the hERG channel in a concentration-dependent manner, with an IC(50) of 2.21 ± 1.29 μM. Osimertinib also inhibited the Nav1.5 channel in a concentration-dependent manner, with IC(50) values in the absence of inactivation, 20% inactivation, and 50% inactivation of 15.58 ± 0.83 μM, 3.24 ± 0.09 μM, and 2.03 ± 0.57 μM, respectively. Osimertinib slightly inhibited the currents of L-type Ca(2+) channels in a concentration-dependent manner in acutely isolated rat ventricular myocytes. Discussion: Osimertinib could prolong the QT interval; PR interval; QRS complex; left atrium, left ventricle, and atrioventricular conduction time in isolated guinea pig hearts. Furthermore, osimertinib could block the hERG, Nav1.5, and L-type Ca(2+) channels in concentration-dependent manners. Therefore, these findings might be the leading cause of the cardiotoxicity effects, such as QT prolongation and decreased left ventricular ejection fraction. |
format | Online Article Text |
id | pubmed-10267729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102677292023-06-15 Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels Li, Peiwen Tian, Xiaohui Wang, Gongxin Jiang, Enshe Li, Yanming Hao, Guoliang Front Pharmacol Pharmacology Introduction: As the third generation of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), osimertinib has demonstrated more significant cardiotoxicity than previous generations of EGFR-TKIs. Investigating the mechanism of osimertinib cardiotoxicity can provide a reference for a comprehensive understanding of osimertinib-induced cardiotoxicity and the safety of the usage of this drug in clinical practice. Methods: Multichannel electrical mapping with synchronous ECG recording was used to investigate the effects of varying osimertinib concentrations on electrophysiological indicators in isolated Langendorff-perfused hearts of guinea pigs. Additionally, a whole-cell patch clamp was used to detect the impact of osimertinib on the currents of hERG channels transfected into HEK293 cells and the Nav1.5 channel transfected into Chinese hamster ovary cells and acute isolated ventricular myocytes from SD rats. Results: Acute exposure to varying osimertinib concentrations produced prolongation in the PR interval, QT interval, and QRS complex in isolated hearts of guinea pigs. Meanwhile, this exposure could concentration-dependently increase the conduction time in the left atrium, left ventricle, and atrioventricular without affecting the left ventricle conduction velocity. Osimertinib inhibited the hERG channel in a concentration-dependent manner, with an IC(50) of 2.21 ± 1.29 μM. Osimertinib also inhibited the Nav1.5 channel in a concentration-dependent manner, with IC(50) values in the absence of inactivation, 20% inactivation, and 50% inactivation of 15.58 ± 0.83 μM, 3.24 ± 0.09 μM, and 2.03 ± 0.57 μM, respectively. Osimertinib slightly inhibited the currents of L-type Ca(2+) channels in a concentration-dependent manner in acutely isolated rat ventricular myocytes. Discussion: Osimertinib could prolong the QT interval; PR interval; QRS complex; left atrium, left ventricle, and atrioventricular conduction time in isolated guinea pig hearts. Furthermore, osimertinib could block the hERG, Nav1.5, and L-type Ca(2+) channels in concentration-dependent manners. Therefore, these findings might be the leading cause of the cardiotoxicity effects, such as QT prolongation and decreased left ventricular ejection fraction. Frontiers Media S.A. 2023-05-30 /pmc/articles/PMC10267729/ /pubmed/37324483 http://dx.doi.org/10.3389/fphar.2023.1177003 Text en Copyright © 2023 Li, Tian, Wang, Jiang, Li and Hao. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Li, Peiwen Tian, Xiaohui Wang, Gongxin Jiang, Enshe Li, Yanming Hao, Guoliang Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels |
title | Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels |
title_full | Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels |
title_fullStr | Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels |
title_full_unstemmed | Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels |
title_short | Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels |
title_sort | acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267729/ https://www.ncbi.nlm.nih.gov/pubmed/37324483 http://dx.doi.org/10.3389/fphar.2023.1177003 |
work_keys_str_mv | AT lipeiwen acuteosimertinibexposureinduceselectrocardiacchangesbysynchronouslyinhibitingthecurrentsofcardiacionchannels AT tianxiaohui acuteosimertinibexposureinduceselectrocardiacchangesbysynchronouslyinhibitingthecurrentsofcardiacionchannels AT wanggongxin acuteosimertinibexposureinduceselectrocardiacchangesbysynchronouslyinhibitingthecurrentsofcardiacionchannels AT jiangenshe acuteosimertinibexposureinduceselectrocardiacchangesbysynchronouslyinhibitingthecurrentsofcardiacionchannels AT liyanming acuteosimertinibexposureinduceselectrocardiacchangesbysynchronouslyinhibitingthecurrentsofcardiacionchannels AT haoguoliang acuteosimertinibexposureinduceselectrocardiacchangesbysynchronouslyinhibitingthecurrentsofcardiacionchannels |