Cargando…
Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers
Computational drug repurposing aims to identify new indications for existing drugs by utilizing high-throughput data, often in the form of biomedical knowledge graphs. However, learning on biomedical knowledge graphs can be challenging due to the dominance of genes and a small number of drug and dis...
Autores principales: | Bang, Dongmin, Lim, Sangsoo, Lee, Sangseon, Kim, Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272215/ https://www.ncbi.nlm.nih.gov/pubmed/37322032 http://dx.doi.org/10.1038/s41467-023-39301-y |
Ejemplares similares
-
On modeling and utilizing chemical compound information with deep learning technologies: A task-oriented approach
por: Lim, Sangsoo, et al.
Publicado: (2022) -
Systematic integration of biomedical knowledge prioritizes drugs for repurposing
por: Himmelstein, Daniel Scott, et al.
Publicado: (2017) -
Drug repurposing for COVID-19 via knowledge graph completion
por: Zhang, Rui, et al.
Publicado: (2021) -
Task-driven knowledge graph filtering improves prioritizing drugs for repurposing
por: Ratajczak, Florin, et al.
Publicado: (2022) -
DrugRep-HeSiaGraph: when heterogenous siamese neural network meets knowledge graphs for drug repurposing
por: Ghorbanali, Zahra, et al.
Publicado: (2023)