Cargando…
RETROFIT: Reference-free deconvolution of cell-type mixtures in spatial transcriptomics
Spatial transcriptomics (ST) profiles gene expression in intact tissues. However, ST data measured at each spatial location may represent gene expression of multiple cell types, making it difficult to identify cell-type-specific transcriptional variation across spatial contexts. Existing cell-type d...
Autores principales: | Singh, Roopali, He, Xi, Park, Adam Keebum, Hardison, Ross Cameron, Zhu, Xiang, Li, Qunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274808/ https://www.ncbi.nlm.nih.gov/pubmed/37333291 http://dx.doi.org/10.1101/2023.06.07.544126 |
Ejemplares similares
-
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
por: Miller, Brendan F., et al.
Publicado: (2022) -
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
por: Ma, Ying, et al.
Publicado: (2022) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
Deconvolution Tactics and Normalization in Renal Spatial Transcriptomics
por: Melo Ferreira, Ricardo, et al.
Publicado: (2022) -
A Novel Framework for the Identification of Reference DNA Methylation Libraries for Reference-Based Deconvolution of Cellular Mixtures
por: Bell-Glenn, Shelby, et al.
Publicado: (2022)