Cargando…

Nuclear factor-Y mediates pancreatic β-cell compensation by repressing reactive oxygen species-induced apoptosis under metabolic stress

BACKGROUND: Pancreatic β-cells elevate insulin production and secretion through a compensatory mechanism to override insulin resistance under metabolic stress conditions. Deficits in β-cell compensatory capacity result in hyperglycemia and type 2 diabetes (T2D). However, the mechanism in the regulat...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Siyuan, Yu, Xiaoqian, Cui, Daxin, Liu, Yin, Yang, Shanshan, Zhang, Hongmei, Hu, Wanxin, Su, Zhiguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278746/
https://www.ncbi.nlm.nih.gov/pubmed/37000974
http://dx.doi.org/10.1097/CM9.0000000000002645
Descripción
Sumario:BACKGROUND: Pancreatic β-cells elevate insulin production and secretion through a compensatory mechanism to override insulin resistance under metabolic stress conditions. Deficits in β-cell compensatory capacity result in hyperglycemia and type 2 diabetes (T2D). However, the mechanism in the regulation of β-cell compensative capacity remains elusive. Nuclear factor-Y (NF-Y) is critical for pancreatic islets' homeostasis under physiological conditions, but its role in β-cell compensatory response to insulin resistance in obesity is unclear. METHODS: In this study, using obese (ob/ob) mice with an absence of NF-Y subunit A (NF-YA) in β-cells (ob, Nf-ya βKO) as well as rat insulinoma cell line (INS1)-based models, we determined whether NF-Y-mediated apoptosis makes an essential contribution to β-cell compensation upon metabolic stress. RESULTS: Obese animals had markedly augmented NF-Y expression in pancreatic islets. Deletion of β-cell Nf-ya in obese mice worsened glucose intolerance and resulted in β-cell dysfunction, which was attributable to augmented β-cell apoptosis and reactive oxygen species (ROS). Furthermore, primary pancreatic islets from Nf-ya βKO mice were sensitive to palmitate-induced β-cell apoptosis due to mitochondrial impairment and the attenuated antioxidant response, which resulted in the aggravation of phosphorylated c-Jun N-terminal kinase (JNK) and cleaved caspase-3. These detrimental effects were completely relieved by ROS scavenger. Ultimately, forced overexpression of NF-Y in INS1 β-cell line could rescue palmitate-induced β-cell apoptosis, dysfunction, and mitochondrial impairment. CONCLUSION: Pancreatic NF-Y might be an essential regulator of β-cell compensation under metabolic stress.