Cargando…

Molecular basis of the TRAP complex function in ER protein biogenesis

The translocon-associated protein (TRAP) complex resides in the endoplasmic reticulum (ER) membrane and interacts with the Sec translocon and the ribosome to facilitate biogenesis of secretory and membrane proteins. TRAP plays a key role in the secretion of many hormones, including insulin. Here we...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaskolowski, Mateusz, Jomaa, Ahmad, Gamerdinger, Martin, Shrestha, Sandeep, Leibundgut, Marc, Deuerling, Elke, Ban, Nenad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279528/
https://www.ncbi.nlm.nih.gov/pubmed/37170030
http://dx.doi.org/10.1038/s41594-023-00990-0
Descripción
Sumario:The translocon-associated protein (TRAP) complex resides in the endoplasmic reticulum (ER) membrane and interacts with the Sec translocon and the ribosome to facilitate biogenesis of secretory and membrane proteins. TRAP plays a key role in the secretion of many hormones, including insulin. Here we reveal the molecular architecture of the mammalian TRAP complex and how it engages the translating ribosome associated with Sec61 translocon on the ER membrane. The TRAP complex is anchored to the ribosome via a long tether and its position is further stabilized by a finger-like loop. This positions a cradle-like lumenal domain of TRAP below the translocon for interactions with translocated nascent chains. Our structure-guided TRAP mutations in Caenorhabditis elegans lead to growth deficits associated with increased ER stress and defects in protein hormone secretion. These findings elucidate the molecular basis of the TRAP complex in the biogenesis and translocation of proteins at the ER.