Cargando…

Thin film design of amorphous hafnium oxide nanocomposites enabling strong interfacial resistive switching uniformity

A design concept of phase-separated amorphous nanocomposite thin films is presented that realizes interfacial resistive switching (RS) in hafnium-oxide-based devices. The films are formed by incorporating an average of 7% Ba into hafnium oxide during pulsed laser deposition at temperatures ≤400°C. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Hellenbrand, Markus, Bakhit, Babak, Dou, Hongyi, Xiao, Ming, Hill, Megan O., Sun, Zhuotong, Mehonic, Adnan, Chen, Aiping, Jia, Quanxi, Wang, Haiyan, MacManus-Driscoll, Judith L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284547/
https://www.ncbi.nlm.nih.gov/pubmed/37343094
http://dx.doi.org/10.1126/sciadv.adg1946
Descripción
Sumario:A design concept of phase-separated amorphous nanocomposite thin films is presented that realizes interfacial resistive switching (RS) in hafnium-oxide-based devices. The films are formed by incorporating an average of 7% Ba into hafnium oxide during pulsed laser deposition at temperatures ≤400°C. The added Ba prevents the films from crystallizing and leads to ∼20-nm-thin films consisting of an amorphous HfO(x) host matrix interspersed with ∼2-nm-wide, ∼5-to-10-nm-pitch Ba-rich amorphous nanocolumns penetrating approximately two-thirds through the films. This restricts the RS to an interfacial Schottky-like energy barrier whose magnitude is tuned by ionic migration under an applied electric field. Resulting devices achieve stable cycle-to-cycle, device-to-device, and sample-to-sample reproducibility with a measured switching endurance of ≥10(4) cycles for a memory window ≥10 at switching voltages of ±2 V. Each device can be set to multiple intermediate resistance states, which enables synaptic spike-timing–dependent plasticity. The presented concept unlocks additional design variables for RS devices.