Cargando…

The development of an anti-cancer peptide M1-21 targeting transcription factor FOXM1

BACKGROUND: Transcription factor FOXM1 is a potential target for anti-cancer drug development. An interfering peptide M1-21, targeting FOXM1 and FOXM1-interacting proteins, is developed and its anti-cancer efficacy is evaluated. METHODS: FOXM1 C-terminus-binding peptides are screened by in silico pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Haojie, Yuan, Jie, Pei, Chaozhu, Ouyang, Min, Bu, Huitong, Chen, Yan, Huang, Xiaoqin, Zhang, Zhenwang, Yu, Li, Tan, Yongjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286459/
https://www.ncbi.nlm.nih.gov/pubmed/37344857
http://dx.doi.org/10.1186/s13578-023-01059-7
Descripción
Sumario:BACKGROUND: Transcription factor FOXM1 is a potential target for anti-cancer drug development. An interfering peptide M1-21, targeting FOXM1 and FOXM1-interacting proteins, is developed and its anti-cancer efficacy is evaluated. METHODS: FOXM1 C-terminus-binding peptides are screened by in silico protocols from the peptide library of FOXM1 (1-138aa) and confirmed by cellular experiments. The selected peptide is synthesized into its D-retro-inverso (DRI) form by fusing a TAT cell-penetrating sequence. Anti-cancer activities are evaluated in vitro and in vivo with tumor-grafted nude mice, spontaneous breast cancer mice, and wild-type metastasis-tracing mice. Anti-cancer mechanisms are analyzed. Distribution and safety profiles in mice are evaluated. RESULTS: With improved stability and cell inhibitory activity compared to the parent peptide, M1-21 binds to multiple regions of FOXM1 and interferes with protein-protein interactions between FOXM1 and its various known partner proteins, including PLK1, LIN9 and B-MYB of the MuvB complex, and β-catenin. Consequently, M1-21 inhibits FOXM1-related transcriptional activities and FOXM1-mediated nuclear importation of β-catenin and β-catenin transcriptional activities. M1-21 inhibits multiple types of cancer (20 µM in vitro or 30 mg/kg in vivo) by preventing proliferation, migration, and WNT signaling. Distribution and safety profiles of M1-21 are favorable (broad distribution and > 15 h stability in mice) and the tested non-severely toxic dose reaches 200 mg/kg in mice. M1-21 also has low hemolytic toxicity and immunogenicity in mice. CONCLUSIONS: M1-21 is a promising interfering peptide targeting FOXM1 for the development of anti-cancer drugs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13578-023-01059-7.