Cargando…

Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity

AIM: This research evaluated standard Weibull mixture cure (WMC) network meta-analysis (NMA) with Bayesian hierarchical (BH) WMC NMA to inform long-term survival of therapies. MATERIALS & METHODS: Four trials in previously treated metastatic non-small-cell lung cancer with PD-L1 >1% were used...

Descripción completa

Detalles Bibliográficos
Autores principales: Heeg, Bart, Verhoek, Andre, Tremblay, Gabriel, Harari, Ofir, Soltanifar, Mohsen, Chu, Haitao, Roychoudhury, Satrajit, Cappelleri, Joseph C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Becaris Publishing Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288968/
https://www.ncbi.nlm.nih.gov/pubmed/36651607
http://dx.doi.org/10.2217/cer-2022-0159
_version_ 1785062182926417920
author Heeg, Bart
Verhoek, Andre
Tremblay, Gabriel
Harari, Ofir
Soltanifar, Mohsen
Chu, Haitao
Roychoudhury, Satrajit
Cappelleri, Joseph C
author_facet Heeg, Bart
Verhoek, Andre
Tremblay, Gabriel
Harari, Ofir
Soltanifar, Mohsen
Chu, Haitao
Roychoudhury, Satrajit
Cappelleri, Joseph C
author_sort Heeg, Bart
collection PubMed
description AIM: This research evaluated standard Weibull mixture cure (WMC) network meta-analysis (NMA) with Bayesian hierarchical (BH) WMC NMA to inform long-term survival of therapies. MATERIALS & METHODS: Four trials in previously treated metastatic non-small-cell lung cancer with PD-L1 >1% were used comparing docetaxel with nivolumab, pembrolizumab and atezolizumab. Cure parameters related to a certain treatment class were assumed to share a common distribution. RESULTS: Standard WMC NMA predicted cure rates were 0.03 (0.01; 0.07), 0.18 (0.12; 0.24), 0.07 (0.02; 0.15) and 0.03 (0.00; 0.09) for docetaxel, nivolumab, pembrolizumab and atezolizumab, respectively, with corresponding incremental life years (LY) of 3.11 (1.65; 4.66), 1.06 (0.41; 2.37) and 0.42 (-0.57; 1.68). The Bayesian hierarchical-WMC-NMA rates were 0.06 (0.03; 0.10), 0.17 (0.11; 0.23), 0.12 (0.05; 0.20) and 0.12 (0.03; 0.23), respectively, with incremental LY of 2.35 (1.04; 3.93), 1.67 (0.68; 2.96) and 1.36 (-0.05; 3.64). CONCLUSION: BH-WMC-NMA impacts incremental mean LYs and cost–effectiveness ratios, potentially affecting reimbursement decisions.
format Online
Article
Text
id pubmed-10288968
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Becaris Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-102889682023-08-11 Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity Heeg, Bart Verhoek, Andre Tremblay, Gabriel Harari, Ofir Soltanifar, Mohsen Chu, Haitao Roychoudhury, Satrajit Cappelleri, Joseph C J Comp Eff Res Methodology AIM: This research evaluated standard Weibull mixture cure (WMC) network meta-analysis (NMA) with Bayesian hierarchical (BH) WMC NMA to inform long-term survival of therapies. MATERIALS & METHODS: Four trials in previously treated metastatic non-small-cell lung cancer with PD-L1 >1% were used comparing docetaxel with nivolumab, pembrolizumab and atezolizumab. Cure parameters related to a certain treatment class were assumed to share a common distribution. RESULTS: Standard WMC NMA predicted cure rates were 0.03 (0.01; 0.07), 0.18 (0.12; 0.24), 0.07 (0.02; 0.15) and 0.03 (0.00; 0.09) for docetaxel, nivolumab, pembrolizumab and atezolizumab, respectively, with corresponding incremental life years (LY) of 3.11 (1.65; 4.66), 1.06 (0.41; 2.37) and 0.42 (-0.57; 1.68). The Bayesian hierarchical-WMC-NMA rates were 0.06 (0.03; 0.10), 0.17 (0.11; 0.23), 0.12 (0.05; 0.20) and 0.12 (0.03; 0.23), respectively, with incremental LY of 2.35 (1.04; 3.93), 1.67 (0.68; 2.96) and 1.36 (-0.05; 3.64). CONCLUSION: BH-WMC-NMA impacts incremental mean LYs and cost–effectiveness ratios, potentially affecting reimbursement decisions. Becaris Publishing Ltd 2023-01-18 /pmc/articles/PMC10288968/ /pubmed/36651607 http://dx.doi.org/10.2217/cer-2022-0159 Text en © 2023 Cytel https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under the Attribution-NonCommercial-NoDerivatives 4.0 Unported License (https://creativecommons.org/licenses/by-nc-nd/4.0/)
spellingShingle Methodology
Heeg, Bart
Verhoek, Andre
Tremblay, Gabriel
Harari, Ofir
Soltanifar, Mohsen
Chu, Haitao
Roychoudhury, Satrajit
Cappelleri, Joseph C
Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity
title Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity
title_full Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity
title_fullStr Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity
title_full_unstemmed Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity
title_short Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity
title_sort bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288968/
https://www.ncbi.nlm.nih.gov/pubmed/36651607
http://dx.doi.org/10.2217/cer-2022-0159
work_keys_str_mv AT heegbart bayesianhierarchicalmodelbasednetworkmetaanalysistoovercomesurvivalextrapolationchallengescausedbydataimmaturity
AT verhoekandre bayesianhierarchicalmodelbasednetworkmetaanalysistoovercomesurvivalextrapolationchallengescausedbydataimmaturity
AT tremblaygabriel bayesianhierarchicalmodelbasednetworkmetaanalysistoovercomesurvivalextrapolationchallengescausedbydataimmaturity
AT harariofir bayesianhierarchicalmodelbasednetworkmetaanalysistoovercomesurvivalextrapolationchallengescausedbydataimmaturity
AT soltanifarmohsen bayesianhierarchicalmodelbasednetworkmetaanalysistoovercomesurvivalextrapolationchallengescausedbydataimmaturity
AT chuhaitao bayesianhierarchicalmodelbasednetworkmetaanalysistoovercomesurvivalextrapolationchallengescausedbydataimmaturity
AT roychoudhurysatrajit bayesianhierarchicalmodelbasednetworkmetaanalysistoovercomesurvivalextrapolationchallengescausedbydataimmaturity
AT cappellerijosephc bayesianhierarchicalmodelbasednetworkmetaanalysistoovercomesurvivalextrapolationchallengescausedbydataimmaturity