Cargando…

miR-33a Expression Attenuates ABCA1-Dependent Cholesterol Efflux and Promotes Macrophage-Like Cell Transdifferentiation in Cultured Vascular Smooth Muscle Cells

Recent evidence suggests that the majority of cholesterol-laden cells found in atherosclerotic lesions are vascular smooth muscle cells (VSMC) that have transdifferentiated into macrophage-like cells (MLC). Furthermore, cholesterol-laden MLC of VSMC origin have demonstrated impaired ABCA1-dependent...

Descripción completa

Detalles Bibliográficos
Autores principales: Esobi, Ikechukwu C., Oladosu, Olanrewaju, Echesabal-Chen, Jing, Powell, Rhonda R., Bruce, Terri, Stamatikos, Alexis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289877/
https://www.ncbi.nlm.nih.gov/pubmed/37359759
http://dx.doi.org/10.1155/2023/8241899
Descripción
Sumario:Recent evidence suggests that the majority of cholesterol-laden cells found in atherosclerotic lesions are vascular smooth muscle cells (VSMC) that have transdifferentiated into macrophage-like cells (MLC). Furthermore, cholesterol-laden MLC of VSMC origin have demonstrated impaired ABCA1-dependent cholesterol efflux, but it is poorly understood why this occurs. A possible mechanism which may at least partially be attributed to cholesterol-laden MLC demonstrating attenuated ABCA1-dependent cholesterol efflux is a miR-33a expression, as a primary function of this microRNA is to silence ABCA1 expression, but this has yet to be rigorously investigated. Therefore, the VSMC line MOVAS cells were used to generate miR-33a knockout (KO) MOVAS cells, and we used KO and wild-type (WT) MOVAS cells to delineate any possible proatherogenic role of miR-33a expression in VSMC. When WT and KO MOVAS cells were cholesterol-loaded to convert into MLC, this resulted in the WT MOVAS cells to exhibit impaired ABCA1-dependent cholesterol efflux. In the cholesterol-loaded WT MOVAS MLC, we also observed a delayed restoration of the VSMC phenotype when these cells were exposed to the ABCA1 cholesterol acceptor, apoAI. These results imply that miR-33a expression in VSMC drives atherosclerosis by triggering MLC transdifferentiation via attenuated ABCA1-dependent cholesterol efflux.