Cargando…

Dissecting sources of variability in patient response to targeted therapy: anti-HER2 therapies as a case study

BACKGROUND AND PURPOSE: Despite their use to treat cancers with specific genetic aberrations, targeted therapies elicit heterogeneous responses. Sources of variability are critical to targeted therapy drug development, yet there exists no method to discern their relative contribution to response het...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Timothy, Cao, Yanguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290754/
https://www.ncbi.nlm.nih.gov/pubmed/37196833
http://dx.doi.org/10.1016/j.ejps.2023.106467
_version_ 1785062558881808384
author Qi, Timothy
Cao, Yanguang
author_facet Qi, Timothy
Cao, Yanguang
author_sort Qi, Timothy
collection PubMed
description BACKGROUND AND PURPOSE: Despite their use to treat cancers with specific genetic aberrations, targeted therapies elicit heterogeneous responses. Sources of variability are critical to targeted therapy drug development, yet there exists no method to discern their relative contribution to response heterogeneity. EXPERIMENTAL APPROACH: We use HER2-amplified breast cancer and two agents, neratinib and lapatinib, to develop a platform for dissecting sources of variability in patient response. The platform comprises four components: pharmacokinetics, tumor burden and growth kinetics, clonal composition, and sensitivity to treatment. Pharmacokinetics are simulated using population models to capture variable systemic exposure. Tumor burden and growth kinetics are derived from clinical data comprising over 800,000 women. The fraction of sensitive and resistant tumor cells is informed by HER2 immunohistochemistry. Growth rate-corrected drug potency is used to predict response. We integrate these factors and simulate clinical outcomes for virtual patients. The relative contributions of these factors to response heterogeneity arecompared. KEY RESULTS: The platform was verified with clinical data, including response rate and progression-free survival (PFS). For both neratinib and lapatinib, the growth rate of resistant clones influenced PFS to a higher degree than systemic drug exposure. Variability in exposure at labeled doses did not significantly influence response. Sensitivity to drug strongly influenced responses to neratinib. Variability in patient HER2 immunohistochemistry scores influenced responses to lapatinib. Exploratory twice daily dosing improved PFS for neratinib but not lapatinib. CONCLUSION AND IMPLICATIONS: The platform can dissect sources of variability in response to target therapy, which may facilitate decision-making during drug development.
format Online
Article
Text
id pubmed-10290754
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-102907542023-07-01 Dissecting sources of variability in patient response to targeted therapy: anti-HER2 therapies as a case study Qi, Timothy Cao, Yanguang Eur J Pharm Sci Article BACKGROUND AND PURPOSE: Despite their use to treat cancers with specific genetic aberrations, targeted therapies elicit heterogeneous responses. Sources of variability are critical to targeted therapy drug development, yet there exists no method to discern their relative contribution to response heterogeneity. EXPERIMENTAL APPROACH: We use HER2-amplified breast cancer and two agents, neratinib and lapatinib, to develop a platform for dissecting sources of variability in patient response. The platform comprises four components: pharmacokinetics, tumor burden and growth kinetics, clonal composition, and sensitivity to treatment. Pharmacokinetics are simulated using population models to capture variable systemic exposure. Tumor burden and growth kinetics are derived from clinical data comprising over 800,000 women. The fraction of sensitive and resistant tumor cells is informed by HER2 immunohistochemistry. Growth rate-corrected drug potency is used to predict response. We integrate these factors and simulate clinical outcomes for virtual patients. The relative contributions of these factors to response heterogeneity arecompared. KEY RESULTS: The platform was verified with clinical data, including response rate and progression-free survival (PFS). For both neratinib and lapatinib, the growth rate of resistant clones influenced PFS to a higher degree than systemic drug exposure. Variability in exposure at labeled doses did not significantly influence response. Sensitivity to drug strongly influenced responses to neratinib. Variability in patient HER2 immunohistochemistry scores influenced responses to lapatinib. Exploratory twice daily dosing improved PFS for neratinib but not lapatinib. CONCLUSION AND IMPLICATIONS: The platform can dissect sources of variability in response to target therapy, which may facilitate decision-making during drug development. 2023-07-01 2023-05-16 /pmc/articles/PMC10290754/ /pubmed/37196833 http://dx.doi.org/10.1016/j.ejps.2023.106467 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Qi, Timothy
Cao, Yanguang
Dissecting sources of variability in patient response to targeted therapy: anti-HER2 therapies as a case study
title Dissecting sources of variability in patient response to targeted therapy: anti-HER2 therapies as a case study
title_full Dissecting sources of variability in patient response to targeted therapy: anti-HER2 therapies as a case study
title_fullStr Dissecting sources of variability in patient response to targeted therapy: anti-HER2 therapies as a case study
title_full_unstemmed Dissecting sources of variability in patient response to targeted therapy: anti-HER2 therapies as a case study
title_short Dissecting sources of variability in patient response to targeted therapy: anti-HER2 therapies as a case study
title_sort dissecting sources of variability in patient response to targeted therapy: anti-her2 therapies as a case study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290754/
https://www.ncbi.nlm.nih.gov/pubmed/37196833
http://dx.doi.org/10.1016/j.ejps.2023.106467
work_keys_str_mv AT qitimothy dissectingsourcesofvariabilityinpatientresponsetotargetedtherapyantiher2therapiesasacasestudy
AT caoyanguang dissectingsourcesofvariabilityinpatientresponsetotargetedtherapyantiher2therapiesasacasestudy