Cargando…
Design, Modeling, and Control of an Aurelia-Inspired Robot Based on SMA Artificial Muscles
This paper presented a flexible and easily fabricated untethered underwater robot inspired by Aurelia, which is named “Au-robot”. The Au-robot is actuated by six radial fins made of shape memory alloy (SMA) artificial muscle modules, which can realize pulse jet propulsion motion. The thrust model of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296439/ https://www.ncbi.nlm.nih.gov/pubmed/37366856 http://dx.doi.org/10.3390/biomimetics8020261 |
Sumario: | This paper presented a flexible and easily fabricated untethered underwater robot inspired by Aurelia, which is named “Au-robot”. The Au-robot is actuated by six radial fins made of shape memory alloy (SMA) artificial muscle modules, which can realize pulse jet propulsion motion. The thrust model of the Au-robot’s underwater motion is developed and analyzed. To achieve a multimodal and smooth swimming transition for the Au-robot, a control method integrating a central pattern generator (CPG) and an adaptive regulation (AR) heating strategy is provided. The experimental results demonstrate that the Au-robot, with good bionic properties in structure and movement mode, can achieve a smooth transition from low-frequency swimming to high-frequency swimming with an average maximum instantaneous velocity of 12.61 cm/s. It shows that a robot designed and fabricated with artificial muscle can imitate biological structures and movement traits more realistically and has better motor performance. |
---|