Cargando…
Quality Assessment and Ripeness Prediction of Table Grapes Using Visible–Near-Infrared Spectroscopy
Ripeness significantly affects the commercial values and sales of fruits. In order to monitor the change of grapes’ quality parameters during ripening, a rapid and nondestructive method of visible-near-infrared spectral (Vis-NIR) technology was utilized in this study. Firstly, the physicochemical pr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296887/ https://www.ncbi.nlm.nih.gov/pubmed/37372575 http://dx.doi.org/10.3390/foods12122364 |
Sumario: | Ripeness significantly affects the commercial values and sales of fruits. In order to monitor the change of grapes’ quality parameters during ripening, a rapid and nondestructive method of visible-near-infrared spectral (Vis-NIR) technology was utilized in this study. Firstly, the physicochemical properties of grapes at four different ripening stages were explored. Data evidenced increasing color in redness/greenness (a*) and Chroma (C*) and soluble solids (SSC) content and decreasing values in color of lightness (L*), yellowness/blueness (b*) and Hue angle (h*), hardness, and total acid (TA) content as ripening advanced. Based on these results, spectral prediction models for SSC and TA in grapes were established. Effective wavelengths were selected by the competitive adaptive weighting algorithm (CARS), and six common preprocessing methods were applied to pretreat the spectra data. Partial least squares regression (PLSR) was applied to establish models on the basis of effective wavelengths and full spectra. The predictive PLSR models built with full spectra data and 1st derivative preprocessing provided the best values of performance parameters for both SSC and TA. For SSC, the model showed the coefficients of determination for calibration ([Formula: see text]) and prediction ([Formula: see text]) set of 0.97 and 0.93, respectively, the root mean square error for calibration set (RMSEC) and prediction set (RMSEP) of 0.62 and 1.27, respectively; and the RPD equal to 4.09. As for TA, the optimum values of [Formula: see text] , [Formula: see text] , RMSEC, RMSEP and RPD were 0.97, 0.94, 0.88, 1.96 and 4.55, respectively. The results indicated that Vis-NIR spectroscopy is an effective tool for the rapid and non-destructive detection of SSC and TA in grapes. |
---|