Cargando…

Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran

Xylanases are the preferred enzymes for the extracting of oligosaccharides from wheat bran. However, free xylanases have poor stability and are difficult to reuse, which limit their industrial application. In the present study, we covalently immobilized free maleic anhydride-modified xylanase (FMA-X...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yang, Li, Xinrui, Guo, Shuo, Xu, Jingwen, Cui, Yan, Zheng, Mingzhu, Liu, Jingsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297198/
https://www.ncbi.nlm.nih.gov/pubmed/37372634
http://dx.doi.org/10.3390/foods12122424
Descripción
Sumario:Xylanases are the preferred enzymes for the extracting of oligosaccharides from wheat bran. However, free xylanases have poor stability and are difficult to reuse, which limit their industrial application. In the present study, we covalently immobilized free maleic anhydride-modified xylanase (FMA-XY) to improve its reusability and stability. The immobilized maleic anhydride-modified xylanase (IMA-XY) exhibited better stability compared with the free enzyme. After six repeated uses, 52.24% of the activity of the immobilized enzyme remained. The wheat bran oligosaccharides extracted using IMA-XY were mainly xylopentoses, xylohexoses, and xyloheptoses, which were the β-configurational units and α-configurational units of xylose. The oligosaccharides also exhibited good antioxidant properties. The results indicated that FMA-XY can easily be recycled and can remain stable after immobilization; therefore, it has good prospects for future industrial applications.