Cargando…
Globus pallidus internus activity increases during voluntary movement in children with dystonia
The rate model of basal ganglia function predicts that muscle activity in dystonia is due to disinhibition of thalamus resulting from decreased inhibitory input from pallidum. We seek to test this hypothesis in children with dyskinetic cerebral palsy undergoing evaluation for deep brain stimulation...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300218/ https://www.ncbi.nlm.nih.gov/pubmed/37389183 http://dx.doi.org/10.1016/j.isci.2023.107066 |
Sumario: | The rate model of basal ganglia function predicts that muscle activity in dystonia is due to disinhibition of thalamus resulting from decreased inhibitory input from pallidum. We seek to test this hypothesis in children with dyskinetic cerebral palsy undergoing evaluation for deep brain stimulation (DBS) to analyze movement-related activity in different brain regions. The results revealed prominent beta-band frequency peaks in the globus pallidus interna (GPi), ventral oralis anterior/posterior (VoaVop) subnuclei of the thalamus, and subthalamic nucleus (STN) during movement but not at rest. Connectivity analysis indicated stronger coupling between STN-VoaVop and STN-GPi compared to GPi-STN. These findings contradict the hypothesis of decreased thalamic inhibition in dystonia, suggesting that abnormal patterns of inhibition and disinhibition, rather than reduced GPi activity, contribute to the disorder. Additionally, the study implies that correcting abnormalities in GPi function may explain the effectiveness of DBS targeting the STN and GPi in treating dystonia. |
---|