Cargando…
Using Radiomics-Based Machine Learning to Create Targeted Test Sets to Improve Specific Mammography Reader Cohort Performance: A Feasibility Study
Mammography interpretation is challenging with high error rates. This study aims to reduce the errors in mammography reading by mapping diagnostic errors against global mammographic characteristics using a radiomics-based machine learning approach. A total of 36 radiologists from cohort A (n = 20) a...
Autores principales: | Tao, Xuetong, Gandomkar, Ziba, Li, Tong, Brennan, Patrick C., Reed, Warren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300999/ https://www.ncbi.nlm.nih.gov/pubmed/37373877 http://dx.doi.org/10.3390/jpm13060888 |
Ejemplares similares
-
Global Radiomic Features from Mammography for Predicting Difficult-To-Interpret Normal Cases
por: Siviengphanom, Somphone, et al.
Publicado: (2023) -
A machine learning model based on readers’ characteristics to predict their performances in reading screening mammograms
por: Gandomkar, Ziba, et al.
Publicado: (2022) -
Assessing mammography film-reader performance
por: Wilkinson, LS, et al.
Publicado: (2008) -
Differentiating Breast Tumors from Background Parenchymal Enhancement at Contrast-Enhanced Mammography: The Role of Radiomics—A Pilot Reader Study
por: Boca (Bene), Ioana, et al.
Publicado: (2021) -
RRIMS: Radiation Risk In Mammography Screening — model evaluation
por: Hooshmand, Sahand, et al.
Publicado: (2023)