Cargando…

TFC-GCN: Lightweight Temporal Feature Cross-Extraction Graph Convolutional Network for Skeleton-Based Action Recognition

For skeleton-based action recognition, graph convolutional networks (GCN) have absolute advantages. Existing state-of-the-art (SOTA) methods tended to focus on extracting and identifying features from all bones and joints. However, they ignored many new input features which could be discovered. More...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Kaixuan, Deng, Hongmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301807/
https://www.ncbi.nlm.nih.gov/pubmed/37420759
http://dx.doi.org/10.3390/s23125593