Cargando…
AlphaFold2 and Deep Learning for Elucidating Enzyme Conformational Flexibility and Its Application for Design
[Image: see text] The recent success of AlphaFold2 (AF2) and other deep learning (DL) tools in accurately predicting the folded three-dimensional (3D) structure of proteins and enzymes has revolutionized the structural biology and protein design fields. The 3D structure indeed reveals key informatio...
Autores principales: | Casadevall, Guillem, Duran, Cristina, Osuna, Sílvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302747/ https://www.ncbi.nlm.nih.gov/pubmed/37388680 http://dx.doi.org/10.1021/jacsau.3c00188 |
Ejemplares similares
-
Estimating conformational heterogeneity of tryptophan synthase with a template‐based Alphafold2 approach
por: Casadevall, Guillem, et al.
Publicado: (2022) -
Approximating conformational Boltzmann distributions with AlphaFold2 predictions
por: Brown, Benjamin P., et al.
Publicado: (2023) -
Sampling alternative conformational states of transporters and receptors with AlphaFold2
por: del Alamo, Diego, et al.
Publicado: (2022) -
AlphaFold and the future of structural biology
por: Read, Randy J., et al.
Publicado: (2023) -
Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures
por: Al-Masri, Carmen, et al.
Publicado: (2023)