Cargando…

Background-Quenched Aggregation-Induced Emission through Electrostatic Interactions for the Detection of Poly(ADP-ribose) Polymerase-1 Activity

Poly(ADP-ribose) polymerase-1 (PARP1) is a potential biomarker and therapeutic target for cancers that can catalyze the poly-ADP-ribosylation of nicotinamide adenine dinucleotide (NAD(+)) onto the acceptor proteins to form long poly(ADP-ribose) (PAR) polymers. Through integration with aggregation-in...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Fengli, Zhao, Ruimin, Huang, Liping, Yi, Xinyao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302931/
https://www.ncbi.nlm.nih.gov/pubmed/37375313
http://dx.doi.org/10.3390/molecules28124759
Descripción
Sumario:Poly(ADP-ribose) polymerase-1 (PARP1) is a potential biomarker and therapeutic target for cancers that can catalyze the poly-ADP-ribosylation of nicotinamide adenine dinucleotide (NAD(+)) onto the acceptor proteins to form long poly(ADP-ribose) (PAR) polymers. Through integration with aggregation-induced emission (AIE), a background-quenched strategy for the detection of PARP1 activity was designed. In the absence of PARP1, the background signal caused by the electrostatic interactions between quencher-labeled PARP1-specitic DNA and tetraphenylethene-substituted pyridinium salt (TPE-Py, a positively charged AIE fluorogen) was low due to the fluorescence resonance energy transfer effect. After poly-ADP-ribosylation, the TPE-Py fluorogens were recruited by the negatively charged PAR polymers to form larger aggregates through electrostatic interactions, thus enhancing the emission. The detection limit of this method for PARP1 detection was found to be 0.006 U with a linear range of 0.01~2 U. The strategy was used to evaluate the inhibition efficiency of inhibitors and the activity of PARP1 in breast cancer cells with satisfactory results, thus showing great potential for clinical diagnostic and therapeutic monitoring.