Cargando…

eWaSR—An Embedded-Compute-Ready Maritime Obstacle Detection Network

Maritime obstacle detection is critical for safe navigation of autonomous surface vehicles (ASVs). While the accuracy of image-based detection methods has advanced substantially, their computational and memory requirements prohibit deployment on embedded devices. In this paper, we analyze the curren...

Descripción completa

Detalles Bibliográficos
Autores principales: Teršek, Matija, Žust, Lojze, Kristan, Matej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303570/
https://www.ncbi.nlm.nih.gov/pubmed/37420553
http://dx.doi.org/10.3390/s23125386
Descripción
Sumario:Maritime obstacle detection is critical for safe navigation of autonomous surface vehicles (ASVs). While the accuracy of image-based detection methods has advanced substantially, their computational and memory requirements prohibit deployment on embedded devices. In this paper, we analyze the current best-performing maritime obstacle detection network, WaSR. Based on the analysis, we then propose replacements for the most computationally intensive stages and propose its embedded-compute-ready variant, eWaSR. In particular, the new design follows the most recent advancements of transformer-based lightweight networks. eWaSR achieves comparable detection results to state-of-the-art WaSR with only a [Formula: see text] F1 score performance drop and outperforms other state-of-the-art embedded-ready architectures by over [Formula: see text] in F1 score. On a standard GPU, eWaSR runs 10× faster than the original WaSR (115 FPS vs. 11 FPS). Tests on a real embedded sensor OAK-D show that, while WaSR cannot run due to memory restrictions, eWaSR runs comfortably at 5.5 FPS. This makes eWaSR the first practical embedded-compute-ready maritime obstacle detection network. The source code and trained eWaSR models are publicly available.