Cargando…
Target Discovery Using Deep Learning-Based Molecular Docking and Predicted Protein Structures With AlphaFold for Novel Antipsychotics
OBJECTIVE: New drugs are needed to treat antipsychotic-resistant schizophrenia, especially those with clozapine-resistant schizophrenia. Atypical antipsychotics have predominantly 5-HT2A and dopaminergic antagonism, but also require investigation of other receptors. METHODS: In this study, the bindi...
Autores principales: | Kim, Yangsik, Kim, Seyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Neuropsychiatric Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307917/ https://www.ncbi.nlm.nih.gov/pubmed/37248690 http://dx.doi.org/10.30773/pi.2022.0343 |
Ejemplares similares
-
Evaluation of AlphaFold2 structures as docking targets
por: Holcomb, Matthew, et al.
Publicado: (2023) -
Benchmarking AlphaFold‐enabled molecular docking predictions for antibiotic discovery
por: Wong, Felix, et al.
Publicado: (2022) -
Deep learning for protein secondary structure prediction: Pre and post-AlphaFold
por: Ismi, Dewi Pramudi, et al.
Publicado: (2022) -
Enhanced antibody-antigen structure prediction from molecular docking using AlphaFold2
por: Gaudreault, Francis, et al.
Publicado: (2023) -
AlphaFold and the future of structural biology
por: Read, Randy J., et al.
Publicado: (2023)