Cargando…

Interpretation of Machine Learning Models for Data Sets with Many Features Using Feature Importance

[Image: see text] Feature importance (FI) is used to interpret the machine learning model y = f(x) constructed between the explanatory variables or features, x, and the objective variables, y. For a large number of features, interpreting the model in the order of increasing FI is inefficient when th...

Descripción completa

Detalles Bibliográficos
Autor principal: Kaneko, Hiromasa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308517/
https://www.ncbi.nlm.nih.gov/pubmed/37396269
http://dx.doi.org/10.1021/acsomega.3c03722