Cargando…
Non-contrast CT synthesis using patch-based cycle-consistent generative adversarial network (Cycle-GAN) for radiomics and deep learning in the era of COVID-19
Handcrafted and deep learning (DL) radiomics are popular techniques used to develop computed tomography (CT) imaging-based artificial intelligence models for COVID-19 research. However, contrast heterogeneity from real-world datasets may impair model performance. Contrast-homogenous datasets present...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310777/ https://www.ncbi.nlm.nih.gov/pubmed/37386097 http://dx.doi.org/10.1038/s41598-023-36712-1 |