Cargando…
Non-contrast CT synthesis using patch-based cycle-consistent generative adversarial network (Cycle-GAN) for radiomics and deep learning in the era of COVID-19
Handcrafted and deep learning (DL) radiomics are popular techniques used to develop computed tomography (CT) imaging-based artificial intelligence models for COVID-19 research. However, contrast heterogeneity from real-world datasets may impair model performance. Contrast-homogenous datasets present...
Autores principales: | Kalantar, Reza, Hindocha, Sumeet, Hunter, Benjamin, Sharma, Bhupinder, Khan, Nasir, Koh, Dow-Mu, Ahmed, Merina, Aboagye, Eric O., Lee, Richard W., Blackledge, Matthew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310777/ https://www.ncbi.nlm.nih.gov/pubmed/37386097 http://dx.doi.org/10.1038/s41598-023-36712-1 |
Ejemplares similares
-
CT-Based Pelvic T(1)-Weighted MR Image Synthesis Using UNet, UNet++ and Cycle-Consistent Generative Adversarial Network (Cycle-GAN)
por: Kalantar, Reza, et al.
Publicado: (2021) -
Cycle-consistent adversarial networks improves generalizability of radiomics model in grading meningiomas on external validation
por: Park, Yae Won, et al.
Publicado: (2022) -
Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy
por: Ravì, Daniele, et al.
Publicado: (2019) -
Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients
por: Tien, Hui-Ju, et al.
Publicado: (2021) -
Extended Spatially Localized Perturbation GAN (eSLP-GAN) for Robust Adversarial Camouflage Patches †
por: Kim, Yongsu, et al.
Publicado: (2021)