Cargando…

Chemoprevention of lotus leaf ethanolic extract through epigenetic activation of the NRF2-mediated pathway in murine skin JB6 P+ cell neoplastic transformation

BACKGROUND AND AIM: Skin is one barrier protecting from environmental risk factors that can make skin cells cancerous through DNA damage and oxidative stress. The nuclear factor erythroid 2-related factor 2 (NRF2) pathway is an anti-stress defense system that can be regulated by DNA methylation and...

Descripción completa

Detalles Bibliográficos
Autores principales: Tung, Yen-Chen, Sung, Ping-Hua, Chen, Pei-Chun, Wang, Hsiao Chi, Lee, Jong Hun, Su, Zheng-Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310861/
https://www.ncbi.nlm.nih.gov/pubmed/37396151
http://dx.doi.org/10.1016/j.jtcme.2023.02.002
Descripción
Sumario:BACKGROUND AND AIM: Skin is one barrier protecting from environmental risk factors that can make skin cells cancerous through DNA damage and oxidative stress. The nuclear factor erythroid 2-related factor 2 (NRF2) pathway is an anti-stress defense system that can be regulated by DNA methylation and histone modification. Dietary phytochemicals have chemopreventive properties that can inhibit or delay carcinogenesis. The lotus leaf is a traditional medicinal plant containing many polyphenols whose extracts show many biological activities, including antioxidant, anti-obesity, and anti-cancer. This study aim to investigate the effect of lotus leaves on neoplastic transformation in murine skin JB6 P+ cells. EXPERIMENTAL PROCEDURE: Lotus leaves were extracted with water (LL-WE) and ethanol (LL-EE), and the LL-WE residues were further extracted with ethanol (LL-WREE). JB6 P+ cells were treated with different extracts. The chemoprotective effect would be evaluated by heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase (NQO1), and UDP glucuronosyltransferase family 1 member A1 (UGT1A1) expression. RESULTS AND CONCLUSION: LL-EE contained higher total phenolics and quercetin among extracts. In mouse skin JB6 P+ cells with 12-O-tetradecanoylphorbol-13-acetate treatment, LL-EE showed the greatest potential to suppress skin carcinogenesis. LL-EE activated the NRF2 pathway by upregulating antioxidant and detoxification enzymes upregulates antioxidant and detoxification enzymes, including HO-1, NQO1, and UGT1A1, and downregulates DNA methylation, which might be caused by lower DNA methyltransferase and histone deacetylase levels. Therefore, our results show that LL-EE reduces the neoplastic transformation of skin JB6 P+ cells, potentially by activating the NRF2 pathway and regulating epigenetic DNA methylation and histone acetylation.