Cargando…
KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality
MOTIVATION: Synthetic lethality (SL) is a promising strategy for anticancer therapy, as inhibiting SL partners of genes with cancer-specific mutations can selectively kill the cancer cells without harming the normal cells. Wet-lab techniques for SL screening have issues like high cost and off-target...
Autores principales: | Zhang, Ke, Wu, Min, Liu, Yong, Feng, Yimiao, Zheng, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311291/ https://www.ncbi.nlm.nih.gov/pubmed/37387166 http://dx.doi.org/10.1093/bioinformatics/btad261 |
Ejemplares similares
-
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers
por: Wang, Shike, et al.
Publicado: (2021) -
‘Single-subject studies’-derived analyses unveil altered biomechanisms between very small cohorts: implications for rare diseases
por: Aberasturi, Dillon, et al.
Publicado: (2021) -
Modeling drug combination effects via latent tensor reconstruction
por: Wang, Tianduanyi, et al.
Publicado: (2021) -
Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design
por: Pereira, Tiago, et al.
Publicado: (2021) -
TUGDA: task uncertainty guided domain adaptation for robust generalization of cancer drug response prediction from in vitro to in vivo settings
por: Peres da Silva, Rafael, et al.
Publicado: (2021)