Cargando…

RNA design via structure-aware multifrontier ensemble optimization

MOTIVATION: RNA design is the search for a sequence or set of sequences that will fold to desired structure, also known as the inverse problem of RNA folding. However, the sequences designed by existing algorithms often suffer from low ensemble stability, which worsens for long sequence design. Addi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Tianshuo, Dai, Ning, Li, Sizhen, Ward, Max, Mathews, David H, Huang, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311297/
https://www.ncbi.nlm.nih.gov/pubmed/37387188
http://dx.doi.org/10.1093/bioinformatics/btad252
Descripción
Sumario:MOTIVATION: RNA design is the search for a sequence or set of sequences that will fold to desired structure, also known as the inverse problem of RNA folding. However, the sequences designed by existing algorithms often suffer from low ensemble stability, which worsens for long sequence design. Additionally, for many methods only a small number of sequences satisfying the MFE criterion can be found by each run of design. These drawbacks limit their use cases. RESULTS: We propose an innovative optimization paradigm, SAMFEO, which optimizes ensemble objectives (equilibrium probability or ensemble defect) by iterative search and yields a very large number of successfully designed RNA sequences as byproducts. We develop a search method which leverages structure level and ensemble level information at different stages of the optimization: initialization, sampling, mutation, and updating. Our work, while being less complicated than others, is the first algorithm that is able to design thousands of RNA sequences for the puzzles from the Eterna100 benchmark. In addition, our algorithm solves the most Eterna100 puzzles among all the general optimization based methods in our study. The only baseline solving more puzzles than our work is dependent on handcrafted heuristics designed for a specific folding model. Surprisingly, our approach shows superiority on designing long sequences for structures adapted from the database of 16S Ribosomal RNAs. AVAILABILITY AND IMPLEMENTATION: Our source code and data used in this article is available at https://github.com/shanry/SAMFEO.