Cargando…
Universal features of Nsp1-mediated translational shutdown by coronaviruses
Nonstructural protein 1 (Nsp1) produced by coronaviruses shuts down host protein synthesis in infected cells. The C-terminal domain of SARS-CoV-2 Nsp1 was shown to bind to the small ribosomal subunit to inhibit translation, but it is not clear whether this mechanism is broadly used by coronaviruses,...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312502/ https://www.ncbi.nlm.nih.gov/pubmed/37398176 http://dx.doi.org/10.1101/2023.05.31.543022 |
Sumario: | Nonstructural protein 1 (Nsp1) produced by coronaviruses shuts down host protein synthesis in infected cells. The C-terminal domain of SARS-CoV-2 Nsp1 was shown to bind to the small ribosomal subunit to inhibit translation, but it is not clear whether this mechanism is broadly used by coronaviruses, whether the N-terminal domain of Nsp1 binds the ribosome, or how Nsp1 specifically permits translation of viral mRNAs. Here, we investigated Nsp1 from three representative Betacoronaviruses – SARS-CoV-2, MERS-CoV, and Bat-Hp-CoV – using structural, biophysical, and biochemical assays. We revealed a conserved mechanism of host translational shutdown across the three coronaviruses. We further demonstrated that the N-terminal domain of Bat-Hp-CoV Nsp1 binds to the decoding center of the 40S subunit, where it would prevent mRNA and eIF1A binding. Structure-based biochemical experiments identified a conserved role of these inhibitory interactions in all three coronaviruses and showed that the same regions of Nsp1 are responsible for the preferential translation of viral mRNAs. Our results provide a mechanistic framework to understand how Betacoronaviruses overcome translational inhibition to produce viral proteins. |
---|