Cargando…
Rescue of secretion of a rare-disease associated mis-folded mutant glycoprotein in UGGT1 knock-out mammalian cells
Endoplasmic reticulum (ER) retention of mis-folded glycoproteins is mediated by the ERlocalised eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognises a mis-folded glycoprotein and flags it for ER retention by reglucosylating one of...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312515/ https://www.ncbi.nlm.nih.gov/pubmed/37398215 http://dx.doi.org/10.1101/2023.05.30.542711 |
Sumario: | Endoplasmic reticulum (ER) retention of mis-folded glycoproteins is mediated by the ERlocalised eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognises a mis-folded glycoprotein and flags it for ER retention by reglucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease even if the mutant glycoprotein retains activity (“responsive mutant”). Here, we investigated the subcellular localisation of the human Trop-2 Q118E variant, which causes gelatinous droplike corneal dystrophy (GDLD). Compared with the wild type Trop-2, which is correctly localised at the plasma membrane, the Trop-2-Q118E variant is found to be heavily retained in the ER. Using Trop-2-Q118E, we tested UGGT modulation as a rescue-of-secretion therapeutic strategy for congenital rare disease caused by responsive mutations in genes encoding secreted glycoproteins. We investigated secretion of a EYFP-fusion of Trop-2-Q118E by confocal laser scanning microscopy. As a limiting case of UGGT inhibition, mammalian cells harbouring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 gene expressions were used. The membrane localisation of the Trop-2-Q118E-EYFP mutant was successfully rescued in UGGT1(−/−) and UGGT1/2(−/−) cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation constitutes a novel therapeutic strategy for the treatment of Trop-2-Q118E associated GDLD, and it encourages the testing of modulators of ER glycoprotein folding Quality Control (ERQC) as broad-spectrum rescueof-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants. |
---|