Cargando…
Tuning Parameters for Polygenic Risk Score Methods Using GWAS Summary Statistics from Training Data
Predicting genetic risks for common diseases may improve their prevention and early treatment. In recent years, various additive-model-based polygenic risk scores (PRS) methods have been proposed to combine the estimated effects of single nucleotide polymorphisms (SNPs) using data collected from gen...
Autores principales: | Jiang, Wei, Chen, Ling, Girgenti, Matthew J., Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312948/ https://www.ncbi.nlm.nih.gov/pubmed/37398263 http://dx.doi.org/10.21203/rs.3.rs-2939390/v1 |
Ejemplares similares
-
PUMAS: fine-tuning polygenic risk scores with GWAS summary statistics
por: Zhao, Zijie, et al.
Publicado: (2021) -
Identifying and correcting for misspecifications in GWAS summary statistics and polygenic scores
por: Privé, Florian, et al.
Publicado: (2022) -
Leveraging both individual-level genetic data and GWAS summary statistics increases polygenic prediction
por: Albiñana, Clara, et al.
Publicado: (2021) -
Penalized regression and model selection methods for polygenic scores on summary statistics
por: Pattee, Jack, et al.
Publicado: (2020) -
RápidoPGS: a rapid polygenic score calculator for summary GWAS data without a test dataset
por: Reales, Guillermo, et al.
Publicado: (2021)