Cargando…
Poria cocos compounds targeting neuropeptide Y1 receptor (Y(1)R) for weight management: A computational ligand- and structure-based study with molecular dynamics simulations identified beta-amyrin acetate as a putative Y(1)R inhibitor
Poria cocos (PC) is a medicinal herb frequently used in weight-loss clinical trials, however the mechanisms by which its compounds target orexigenic receptors including the neuropeptide Y(1) receptor (Y(1)R) remain largely unknown. This study aimed to screen PC compounds for favourable pharmacokinet...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313034/ https://www.ncbi.nlm.nih.gov/pubmed/37390097 http://dx.doi.org/10.1371/journal.pone.0277873 |
Sumario: | Poria cocos (PC) is a medicinal herb frequently used in weight-loss clinical trials, however the mechanisms by which its compounds target orexigenic receptors including the neuropeptide Y(1) receptor (Y(1)R) remain largely unknown. This study aimed to screen PC compounds for favourable pharmacokinetics profiles and examine their molecular mechanisms targeting Y(1)R. Forty-three PC compounds were systematically sought from pharmacological databases and docked with Y(1)R (PDB: 5ZBQ). By comparing the relative binding affinities, pharmacokinetics and toxicity profiles, we hypothesised that compounds designated PC1 3,4-Dihydroxybenzoic acid, PC8 Vanillic acid, PC40 1-(alpha-L-Ribofuranosyl)uracil, could be potential antagonists as they contact major residues Asn283 and Asp287, similar to various potent Y(1)R antagonists. In addition, PC21 Poricoic acid B, PC22 Poricoic acid G and PC43 16alpha,25-Dihydroxy-24-methylene-3,4-secolanosta-4(28),7,9(11)-triene-3,21-dioic acid, contacting Asn299, Asp104 and Asp200 proximal to the extracellular surface could also interfere with agonist binding by stabilising the extracellular loop (ECL) 2 of Y(1)R in a closed position. Owing to their selective interaction with Phe302, an important residue in binding of selective Y(1)R antagonists, PC12 beta-Amyrin acetate, PC26 3-Epidehydrotumulosic acid and PC27 Cerevisterol were proposed as putative antagonists. Following the consensus approach, PC12 beta-Amyrin acetate, PC26 3-Epidehydrotumulosic acid and PC27 Cerevisterol were identified as candidate compounds due to their high affinities (-12.2, -11.0 and -10.8 kcal, respectively), high drug-likeness and low toxicity profiles. Trajectory analyses and energy contributions of PC12-Y(1)R complex further confirmed their structural stability and favourable binding free energies, highlighting the feasibility and possible development of PC12 beta-Amyrin acetate as a future Y(1)R inhibitor. |
---|