Cargando…
Deep neural networks with knockoff features identify nonlinear causal relations and estimate effect sizes in complex biological systems
BACKGROUND: Learning the causal structure helps identify risk factors, disease mechanisms, and candidate therapeutics for complex diseases. However, although complex biological systems are characterized by nonlinear associations, existing bioinformatic methods of causal inference cannot identify the...
Autores principales: | Fan, Zhenjiang, Kernan, Kate F, Sriram, Aditya, Benos, Panayiotis V, Canna, Scott W, Carcillo, Joseph A, Kim, Soyeon, Park, Hyun Jung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316696/ https://www.ncbi.nlm.nih.gov/pubmed/37395630 http://dx.doi.org/10.1093/gigascience/giad044 |
Ejemplares similares
-
Identification of putative causal loci in whole-genome sequencing data via knockoff statistics
por: He, Zihuai, et al.
Publicado: (2021) -
An embedded gene selection method using knockoffs optimizing neural network
por: Guo, Juncheng, et al.
Publicado: (2020) -
Granger causality revisited
por: Friston, Karl J., et al.
Publicado: (2014) -
GhostKnockoff inference empowers identification of putative causal variants in genome-wide association studies
por: He, Zihuai, et al.
Publicado: (2022) -
Multivariate Analysis of Effective Dose and Size-Specific Dose Estimates for Thorax and Abdominal Computed Tomography
por: Shah, Mudasir Ashraf, et al.
Publicado: (2023)